

Vegetation of the Santa Catalina Mountains, Arizona. V. Biomass, Production, and Diversity along the Elevation Gradient

R. H. Whittaker, W. A. Niering

Ecology, Volume 56, Issue 4 (Jul., 1975), 771-790.

Stable URL:

http://links.jstor.org/sici?sici=0012-9658%28197507%2956%3A4%3C771%3AVOTSCM%3E2.0.CO%3B2-S

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Each copy of any part of a ISTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

Ecology is published by The Ecological Society of America. Please contact the publisher for further permissions regarding the use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/esa.html.

Ecology ©1975 The Ecological Society of America

JSTOR and the JSTOR logo are trademarks of JSTOR, and are Registered in the U.S. Patent and Trademark Office. For more information on JSTOR contact jstor-info@umich.edu.

©2002 JSTOR

VEGETATION OF THE SANTA CATALINA MOUNTAINS, ARIZONA. V. BIOMASS, PRODUCTION, AND DIVERSITY ALONG THE ELEVATION GRADIENT¹

R. H. WHITTAKER

Ecology and Systematics, Cornell University, Ithaca, New York 14850 USA

AND

W. A. NIERING

Botany Department, Connecticut College, New London, Connecticut 06320 USA

Abstract. Measurements were taken in 15 communities along the elevation gradient from fir forest at high elevations, through pine forest, woodlands, and desert grassland, to deserts at low elevations in the Santa Catalina Mountains, Arizona, and in a Cercocarpus shrubland on limestone. Eight small-tree and shrub species of woodlands and deserts were subjected to dimension analysis by the Brookhaven system. Aboveground biomass decreased along the elevation gradient from 36-79 dry kg/m2 in fir and Douglas-fir forest to 0.26-0.43 kg/m2 in the desert grassland and two desert samples. Net aboveground primary productivity similarly decreased from 1,050-1,150 g/m² yr in mesic high-elevation forests to 92-140 g/m² yr in desert grassland and deserts. Both biomass and production show a two-slope relation to elevation (and, probably, to precipitation), with a steeper decrease from the high-elevation forests to the mid-elevation woodlands, and a less steep decrease from dry woodlands through desert grassland into desert. The two groups of communities at higher vs. lower elevations also show different relations of leaf area index and chlorophyll to elevation and to productivity. The two groups may represent different adaptive patterns: surface-limiting, with low productivity in relation to precipitation but high production efficiency in relation to surface in the more arid lower elevations, vs. surface-abundant, with high productivity relative to precipitation based on high community surface area, but lower production efficiency in relation to this area, in the more humid higher elevations. Vascular plant species diversity shows no simple relation to productivity, but decreases from high-elevation fir forests to the pine forests, increases from these to the open woodlands, and decreases from dry woodlands through the desert grassland and mountain slope desert to the lower bajada (creosotebush) desert.

Key words: Arizona; biomass; desert; diversity; elevation; forest; grassland; productivity; Santa Catalina Mountains; woodland.

INTRODUCTION

The Santa Catalina Mountains are a range with strong Mexican affinities, northeast of the city of Tucson in southeastern Arizona. The south slope of the range bears an uninterrupted vegetational gradient from subalpine forest through woodlands and grasslands to desert. This gradient, described by Shreve (1915) and Whittaker and Niering (1964, 1965) is unique in the Southwest for its wide range of communities on largely consistent parent materials (Catalina gneiss and granite, and the bajada materials derived from these). On the north side of the mountains a vegetation pattern from fir forest to desert grassland occurs on a more complex mosaic of parent materials and includes distinctive communities on limestone among which mountain mahogany (Cercocarpus breviflorus) shrubland is most extensive (Whittaker and Niering 1968a, b). For this study production samples were taken in 14 climax vegetation types on the south slope of the range, and in a successional stand of aspen and a Cercocarpus scrub

¹ Manuscript received 1 June 1973; accepted 19 December 1974.

on limestone. Some major species of the woodlands and deserts were subjected to dimension analysis by the Brookhaven system (Whittaker and Woodwell 1968, 1969, 1971). Primary purposes of the study were (1) to obtain measurements of aboveground net primary productivity and biomass for kinds of communities—woodlands and semideserts especially—for which few data are available, and (2) to observe interrelations of biomass, production, leaf area and chlorophyll, and species diversity along the extended physiognomic gradient from fir forest to desert.

Basis of the Study The elevation gradient

Elevations range from 2,766 m at the summit of Mt. Lemmon to 850–980 m at the southwestern base of the range near Tucson, and down the desert plain or bajada to 730 m at Tucson. The gradient of vegetation extends from subalpine fir forests near the summit of Mt. Lemmon through montane fir forest and pine forest, pine-oak forest, pine-oak woodland, pygmy conifer-oak scrub, open oak wood-

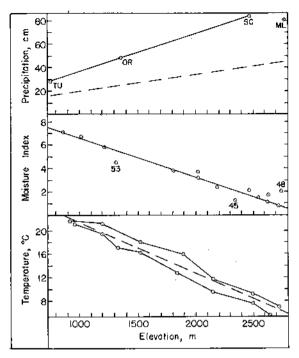


Fig. 1. Elevation and climate, Santa Catalina Mountains.

Top: Mean annual precipitation in cm at four stations: Tucson (TU) and Oracle (OR) (Sellers 1960, McDonald 1956), Soldiers Camp (SC) (6-yr record, Mallery 1936), and Mt. Lemmon (ML) (3-yr record, Weather Bureau 1952-54). The solid line is a trend (y = 3.0 + 34.2x), with x in 1,000 m) for the first three points. The dashed line is the trend line for mean daily precipitation in mm/day times 100, from the network of rain gauges of Battan and Green (1971); these values times 1.8 approximate the slope for year-round precipitation.

Middle: Weighted-average moisture indices for the vegetation samples of this study. Three stations lie off the trend line (y = 10 - 3.4x, with x in 1,000 m) because of topographic position—48 (a summit SSW-slope), 45 (ravine), and 53 (a lower NNW-slope).

Bottom: Mean annual soil temperatures at 20-cm depth on south-facing slopes on the south side of the range (upper series) and north-facing slopes on the north side of the range (lower series), from Whittaker et al. (1968). The regression line is y = 30.42 - 8.90x, with x in 1,000 m. Short-term data of Shreve (1915) gave a mean decrease of 7.5°C per 1,000 m elevation.

land, and desert grassland to spinose-suffrutescent Sonoran semidesert on the mountain slopes, while on the desert plain or bajada below the mountains the desert gradation continues through the paloverde-bursage semidesert to the creosotebush desert of the lower bajada.

Changes in climate with elevation in the Santa Catalina Mountains were described by Shreve (1915), and available climatic data were summarized by Whittaker and Niering (1965). Changes in soils with elevation were described for the Catalinas by Whit-

taker et al. (1968) and for the nearby Pinaleno Mountains by Martin and Fletcher (1943). The top panel of Fig. 1 shows together the mean annual precipitation in four weather stations at different elevations, and a trend line for summer precipitation in a network of rain gauges. The data are not compelling, but suggest a linear increase in precipitation from 730 to 2,400 m elevation. Because the production samples were taken from different kinds of topographic positions, elevation is only a crude expression of their probable moisture relationships. A moisture index providing a better expression of these relationships was based on the intensive study of species distributions by Whittaker and Niering (1964, 1965). Plant species were classified by their relations to the moisture gradient in topographic transects for elevation belts from 0 (most mesic and highest elevation) to 8 (most xeric and lowest elevation). These species classes, or ecological groups, are applied as weights to the composition of vegetation samples to obtain weighted-average indices of the relative positions of samples along the gradient (Whittaker and Niering 1965). Index values for the production samples are given in Table 1-B and are plotted in relation to elevation in the middle panel of Fig. 1, where they show a linear trend.

The bottom panel of Fig. 1 gives the trend of mean annual soil temperatures at 20 cm depth, measured at 2-wk intervals from September 1962 to August 1963. At 10 of the stations, 5 pairs on each side of the range between 1,200 and 2,140 m, mean annual soil temperatures were obtained for both north-facing and south-facing slopes; the latter averaged 3.35°C warmer (Whittaker et al. 1968). Mean monthly temperatures for January and July, and mean annual temperatures, are 10.0°, 30.1°, and 19.6°C at Tucson, 7.7°, 26.5°, and 16.7°C at Oracle (1,370 m elevation) (Sellers 1960). Soil trends from high elevation to low included decreasing litter cover and organic content of soils, decreasing nitrogen content and carbon initrogen ratios, increasing pH, and increasing contents of Ca, Mg, and K (Whittaker et al. 1968). Although elevation is a complex-gradient of many climatic and edaphic factors, moisture conditions are considered the principal variable affecting vegetation structure and productivity along the gradient from fir forest to desert. Community characteristics are plotted in relation to both elevation and the moisture index in some of the figures that follow.

Communities sampled

Elevations, topographic positions, and other characteristics of the samples are summarized in Table 1. Samples 44-57 were taken to represent the major kinds of communities along the elevation gradient on the south slope of the mountains. Samples 44-55

of the herb stratum; penetration was consequently

Summarized characteristics of productivity samples, Santa Catalina Mountains TABLE 1.

	Populus remuloides teavoi fanoiseacus	59	2,550 E 27 1,46	34 14 6	17.2 15.8 15.5 802 6.4 3.0	235 71 31.6 38.6 15.2 16.1 16.1 218 1.14 885 539 539
ı sn	Cercocarpus brevistore shrubland	58	1,810 ESE 33 3.74	33	81.5 49.7 293 1.40 .85	393 2.68 3.7 .05 5.0
i	Larrea divaricata desert scrub	57	760 W 4 7.50	2.1	85.5 85.5 .068 .60	4,950° 4.15° 1.7 .09 3.5
–เนก	Cercidium microphylli Franseria dell'oidea desert sorub	56	870 SSE 3 7.03	21 5	87.9 62.4 62.4 205 34	146 ⁴ 2.96 3.1 4.5
	Spinose-suffrutescent desert scrub	55	1,020 SSE 22 6.76	20 16 9 9 8 6	88.2 76.7 73.5 .135 .94	387f 10.9 3.4 18.5
מ	Boutelong curtipendulu desert grassland	54	1,220 SSW 27 5.80	8 30 40 7	98 32.8 .484 1.58	2 64 .01 .21 .0045 .0045
	Open oak woodland	53	1,310 NNW 26 4.52	8 4 5 4 0 8 4 5 4 0	32.4 ² 285 1.76 .80	19 4.01 22.3 5.3 .02 10.7 10.7 10.7 10.7 10.7 10.7 10.7
	Pyg my conifer- oak scrub	52	2,040 W 13 3.67	6 4 4 4	91.2 25.5 25.4 .430 2.0	25.4 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6
	Pinus chihuahuana– Quercus arizonica woodland	51	2,040 SSE 17 3.16	32 6 4 8	42.7 34.2 34.0 .468 3.7 1.8	278 26.0 .02 21.2 7.5 7.5 98 .38 .38 .66
sno	Pinus ponderosa—Quer hypoleucoides lorest	50	2,180 SW 15 2.54	4.4 4.0 5	36.8 36.8 36.3 441 4.7 1.8	128 34.9 24.6 15.2 30 265 265 38 .187 100
	neorshnog enni¶ lestol	49	2,470 WSW 8 2.16	100	21.5 20.6 19.9 .702 5.9 1.7	110 46.3 27.7 18.4 41.4 425 .52 .275 180 142
.5	enni4–peorahnog enni4 Izarol eimrofidorte	48	2,740 SSW 111 2.05	104	37.9 34.4 32.1 .693 7.6 2.0	270 39.4 24.8 12.8 36 253 253 373 183 93
	Pseudorsuga menziesii Izsiol	47	2,650 NNW 29 1.82	114	4.5 4.3 4.3 1.361 15.5 6.1	34 38 38 70.5 23.7 27.6 58 980 980 980 243 311 252
-	-iisəlznəm nguzlobuəs¶ 129101 10102402 səidA	46	2,640 NW 27 1.07	80 8 8 9 9 8 9	5.6 5.1 4.7 1.341 16.7 7.0	40 87 118.1 123.2 27.9 27.9 1666 .95 .95 .499 .593
	toloonoo toidh. teotol oniver	45	2,340 Rav. 1.26	76 44 18 10	12.8 12.6 9.7 1.013 15.5 6.2	20.7 22.7 25.5 25.7 25.7 1.06 1.06 563 124
	Abies lassocarpa Isanol aniqisdus	4	2,720 NNE 25 0.89	90 10 10 10 10	7.3 7.2 7.2 1.141 14.7 5.8	59 16 57.8 57.8 13.4 33.5 78 78 78 .78 .78 .78
	Sample number and characteristic	A. Sample number	rces)	C. Cover and light Individual-point cover (%) Conifers Broadleaf trees Shrubs Herbs Thallophytes Rock	Light penetration (%) Through trees shrubs and seedlings ^a herbs Log light absorption Leaf area index (m²/m²) Chlorophyll (g/m²)	D. Stand characteristics Stems/0.1 ha,* trees shrubs Basal area (m²/ha),* trees Bark/stem basal area (%) Weighted mean height (m) Conic stem surface (m²/m²) Parabolic stem volume (m²/ha) Mean radial increment (mm/yr) Basal area increment (mm/yr) Basal area increment (mm/yr) Weighted mean age (yr)

Soils data are given in Whittaker et al. (1968, Tables I and II).
 Weighted-average index of Whittaker and Niering (1964, 1965); high values are xeric.
 Schaghtella.
 Below straum of strubs and tree seedlings. In samples 53 and 54 the principal shrubs (Agave schottii, Calliandra eriophylla) are part measured for the combined herb-shrub stratum.
 Schag over I cm at breast height (except sample 57, all stems at 10 cm above ground level).
 Arborescent shrubs and small trees together.

and sample 59 are all on the Catalina granite-gneiss soils; samples 56 and 57 are on coarse upper, and fine lower bajada deposits derived from the granitegneiss slopes of the Catalinas. Data on soils of the samples are given by Whittaker et al. (1968); further information on species composition characteristic of the types of communities is given by Whittaker and Niering (1964, 1965). Probably all vegetation above the desert has been subject to ground-fires, at least, in the past. Two of the forest samples (44 and 48) may have less than climax biomass because of past crown fires, and one sample (59) was a successional stand of aspen (Populus tremuloides) resulting from a fire. The range has been subject also to grazing by cattle; but the south slope, where it is ascended by the Mt. Lemmon highway, has been protected against grazing since 1947. All the production samples are considered to represent climax or nearclimax communities except for the aspen stand. In this statement "climax" does not refer to climatic climax in the sense of Clements (1936), but to steadystate natural communities that are self-maintaining in their particular climatic, topographic, and edaphic environments, and that are generally characterized by near-equality of gross primary productivity and total community respiration and by maximum biomass for successions in their particular environments (Whittaker 1953, 1974). Lightning-induced fires are part of the natural environment of all communities between the deserts and the fir forests (Whittaker and Niering 1965), and we believe that past grazing has not caused significant present departure from the climax condition in these communities. The samples were taken along the Mt. Lemmon highway or on the upper slopes of Mt. Lemmon, unless otherwise indicated.

Subalpine fir forest (sample 44).—Abies lasiocarpa is strongly dominant, making up 85% of stem volume in the sample, with Pseudotsuga menziesii as second species with 10% of volume. The undergrowth is very sparse; Jamesia americana was the principal shrub, Pyrola virens and P. secunda the principal herbs. The bulk of the trees were in size classes 25-50 cm dbh (and 100-130 yr of age), and there were few young trees. The stand occupies a limited area of convex, north-facing slope shortly below the summit of Mt. Lemmon.

Mesic ravine fir forest (sample 45).—This sample, in Marshall Gulch, is dominated by Abies concolor and P. menziesii (55% and 20% of volume), with several percent volume each for Pinus strobiformis, Acer grandidentatum, and Alnus obtusa. Rubus neomexicanus and Symphoricarpus oreophilus are the principal shrubs, Glyceria elata, Pteridium aquilinum, and Bromus richardsonii the major species in a rich herb stratum. Ages of trees were mostly 50-145 yr at breast height; it is likely that the largest and oldest trees were cut from the stand some time in the past.

North-slope, montane fir forest (sample 46).—Pseudo-tsuga menziesii is dominant (79% of volume), with A.

concolor as second species (17%). The canopy trees were 90-150 cm dbh, 25-45 m tall, and 150-190 yr old at breast height. The undergrowth is sparse, though not so meager as in sample 44; S. oreophilus is the principal shrub, Thalictrum fendleri and B. richardsonii the principal herbs.

Drier montane fir forest (sample 47).—Pseudotsuga menziesii is dominant (88%) with A. concolor (7%) and Pinus strobiformis (5%); the canopy trees were 50-95 cm dbh, 25-37 m tall, and 200-250 yr old. Jamesta americana is the principal shrub, B. richardsonii and Carex sp. the principal species in the meager herb stratum.

High-elevation pine forest (sample 48).—Pinus ponderosa makes up 68% and P. strobiformis 32% of stand volume; P. menziesii is present in the stand. There are few shrubs, but Muhlenbergia virescens and Pteridium aquilinum are the major species in an herb stratum of fair coverage (10%). Canopy stems were 25-50 cm dbh, 12-17 m tall, and 70-120 yr old; and in contrast to sample 44 the stand includes many younger trees. Maximum ages of trees suggest these may have replaced a forest destroyed by fire somewhat more than 130 yr ago.

Lower elevation pine forest (sample 49).—Pinus ponderosa is strongly dominant (99% of volume vs. 1% for P. strobiformis); the canopy trees were 40-60 cm dbh, 15-25 m tall, and 100-180 yr old at breast height. Undergrowth composition resembled that of sample 48.

Pine-oak forest (sample 50).—Pinus ponderosa makes up 95% of stand volume, Q. hypoleucoides 4%, and Arbutus arizonica less than 1%. The canopy pines were 25-45 cm dbh, 15-20 m tall, and 120-170 yr old; a few larger pines are present. The oaks (Quercus hypoleucoides) form a small-tree stratum beneath the pine canopy; the larger oaks were 10-25 cm dbh, 4.5-7.0 m tall, and 30-50 yr old. The undergrowth is sparse, with Rhamnus californica the principal shrub, M. virescens and Commandra pallida the principal herbs.

Pine-oak woodland (sample 51).—The stand is smaller and more open than the preceding, with dominance shared among two pine and two oak species—Pinus chihuahuana 45%, P. ponderosa 10%, Q. hypoleucoides 25%, Q. arizonica 18% of volume; A. arizonica and Juniperus deppeana are present. The rosette shrubs Yucca schottii and Nolina microcarpa and the sclerophyll Arctostaphylos pungens are the principal shrub species; Muhlenbergia emersleyi is strongly dominant in the herb stratum. The canopy pines were 25-40 cm dbh, 9-15 m tall, and 100-150 yr old; the oaks 10-20 cm dbh, 3-6 m tall, and 30-50 yr old.

Pygmy conifer-oak scrub (sample 52).—This physiognomically distinctive community has a very open stratum of Pinus cembroides (Mexican pinyon pine, 69% of volume), Juniperus deppeana (alligator juniper, 16%), and Q. hypoleucoides (silverleaf oak, 4%) above a denser but still open stratum of sclerophyll shrubs (Arctostaphylos pringlei, A. pungens, Garrya wrightii) and rosette shrubs (Y. schottii, N. microcarpa, Agave palmeri, and Dasylirion wheeleri). The trees are small; the "canopy" trees were mostly 12-20 cm dbh, 2-4 m tall, and 70-120 yr old (but some individual junipers were more than 200 yr old). Basal area and stem volume are in a range appropriate to a shrub community (cf. Whittaker 1963), and the radial wood increments of

the trees are lower than in any other forest or woodland sampled. Herb coverage is very low, with M. emerslevi the principal species.

Open oak woodland (sample 53).—Scattered evergreen oaks are of low coverage (8%) and small volume (56% in Q. oblongifolia, 44% in Q. emoryi), above shrub and herb strata of moderate coverage. The larger oaks were 25-35 cm dbh, and 5-7 m tall; their ages could not be read. The principal shrub species are G. wrightii, Selloa glutinosa, Dalea pulchra, Baccharis thesioides, and the rosette shrubs N. microcarpa, Y. schottii, and Dasylirion wheeleri; cacti (Opuntia phaeacantha and O. spinosior) first appear as a significant part of the shrub stratum in this sample. The herb stratum is strongly dominated by a low rosette shrub (Agave schottii) that from a distance appears to be part of the grass cover; the other principal species of the herb stratum are the grasses M. emersleyi, Andropogon cirratus, Bouteloua curtipendula, and Aristida orcuttiana, the xeric fern Bommeria hispida, and Gnaphalium wrightii.

Desert grassland (sample 54).—Fouquieria spiendens contributed the small basal area and volume of the "tree" stratum; Prosopis juliflora and Vauquelinia californica were present on the slope. The principal shrubs were Calliandra eriophylla, Carlowrightia arizonica, Haplopappus laricifolius, and Jatropha cardiophylla. Bouteloua curtipendula was the dominant grass, with B. filiformis, Aristida ternipes, Heteropogon contortus, Trichachne californica, and Muhlenbergia porteri other principal herb species.

Spinose-suffrutescent Sonoran semidesert of the lower mountain slopes (sample 55).—In the complex physiognomy of this type the open "canopy" is formed by spinose trees and arborescent spinose shrubs—Carnegiea gigantea (giant cactus or saguaro), Cercidium microphyllum (paloverde), Fouquieria splendens (ocotillo), and Prosopis juliflora (mesquite). With these occur lower spinose shrubs (Acacia greggii, Opuntia phaeacantha, and other cacti), low shrubs of which Encelia farinosa (brittlebush) and Calliandra eriophylla are most important, perennial forbs (Boerhaavia gracillima, Euphorbia melanadenia, and Allionia incarnata), and grasses (Muhlenbergia porteri and Aristida ternipes). Annual herbs also are conspicuous during rainy seasons. Community structure and dynamics are further described by Niering et al. (1963).

Paloverde-bursage (Cercidium microphyllum-Franseria deltoidea) semidesert of the upper bajada (sample 56), sampled near Campbell Avenue, Tucson.—The two dominants form distinct strata, 2-4 m and about 0.3 m tall; other major species are Fouquieria splendens, Opuntia phaeacantha and O. fulgida, Mammilaria microcarpa and Echinocereus fendleri, Iatropha cardiophylla and Janusia gracilis, and Calliandra eriophylla and Carlowrightia arizonica. Herb coverage was very low, with Bouteloua aristidoides the principal species.

Creosotebush (Larrea divaricata) desert of the lower bajada (sample 57), sampled near the Tanque Verde-Sabino Canyon Road near Tucson.—Larrea was more strongly dominant than in many creosotebush deserts (cf. Rickard 1963, Lowe 1964, Shreve 1964); the stands below the Catalinas lack Franseria dumosa. Density of the Larrea shrubs (205/0.1 ha) was near the high extreme for creosotebush desert; for other stands (with Larrea in most cases mixed with other species) Woodell

et al. (1969) gave a Larrea density range of 6-54/0.1 ha and Barbour (1969) 3-187/0.1 ha. Small coverage was contributed by Ephedra nevadensis and the semishrubs Psilostrophe cooperi and Zinnia pumila. Herb coverage in this stand, which had probably been grazed in the past, was minute.

Mountain mahogany (Cercocarpus brevisionus) scrub on limestone (sample 58), sampled on Marble Mountain above the Oracle Road on the north slope of the Santa Catalina Mountains.—The shrubs form an open cover (33%), 1.5-2.5 m tall, above a well-developed grass and forb layer. The community thus resembles a woodland in miniature, and on limestone replaces the oak and pine-oak woodlands of corresponding elevations and topographic positions on acid rocks (Whittaker and Niering 1968a, b). Shrubs other than the dominant Cercocarpus include N. microcarpa, A. palmeri, G. wrightii, and Sphaeralcea fendleri. In the herb stratum B. curtipendula is dominant; other species are Viguiera dentata, Hymenothrix wrightii, and Verbena neomexicanus.

Successional aspen (Populus tremuloides) forest (sample 59).—Trees other than Populus (which has 72% of stem volume) are Robinia neomexicana (7.5%), Salix scouleri (6.5%), and young Pseudotsuga menziesii (10%) and A. concolor (2.5%). The Populus were mostly 15-25 cm dbh, 12-18 m tall, and 36-65 yr old. Jamesia americana is the principal shrub species, Pteridium aquilinum and Bromus richardsonii the principal herb species. The stand is assumed to have replaced a fir forest following fire, and to be developing toward climax composition similar to that of sample 47.

Species subjected to dimension analysis

The Brookhaven system of dimension analysis (Whittaker and Woodwell 1968, 1971) was applied to eight of the major woody species of the woodlands, semideserts, and creosotebush desert.

Quercus hypoleucoides (silverleaf oak) is an evergreen oak with Salix-like leaves of upper-middle elevation woodlands. This, along with other evergreen oaks of the range, is a small tree species with relatively heavy branches; few of the stems exceed 15 cm dbh and 5-6 m, very few reach 30 cm dbh and 8-9 m height. Most twigs bear current and 1-yr-old leaves, and few 2-yr-old leaves; the estimate of older leaf growth of 10.4% of aboveground net production was based on increase in mean dry weight of 1-yr-old leaves compared with current (midsummer) leaves on the sample trees. Wood rings of the oaks are interpretable at higher elevations (the trees were from sample 50), but are increasingly difficult toward lower elevations.

Pinus cembroides (Mexican pinyon pine) is on the whole a smaller tree than the oak, growing in somewhat drier environments. The pinyons are irregular in form, with heavy branches; very few of them exceeded 15 cm dbh and 3-4 m height. Needles are persistent for 5-6 or rarely 7 yr; as in Q. hypoleucoides, older leaf growth was inferred from the curve of increased needle weight from current to 1- and 2-yr-old leaves. The wood rings are fairly clear, but light false rings alternating with darker true annual rings are frequent.

Cercocarpus breviflorus (mountain mahogany) is a deciduous, arborescent shrub that in this area occurs

primarily on limestone. The shrubs analyzed, taken from sample 58, ranged 1.6-5.2 cm dbh, up to 4.0 m in height.

Arctostaphylos pringlei and A. pungens are evergreen manzanitas with thick, sclerophyllous leaves; both contrast with the preceding three species in having very thin bark. Arctostaphylos pringlei is arborescent and similar to Cercocarpus in size; both Arctostaphylos, however, tend to have several stems from a common root crown, the Cercocarpus a single main stem per shrub. Basal diameters of the sample shoots of A. pringlei were 2.4-7.4 cm, heights 0.8-1.9 m; those for A. pungens were 1.3-3.1 cm, and 0.5-1.1 m. In both species many of the stems of older shoots are partly dead; in some only a strip of living bark and wood runs up one side of the stem. High dispersions from the regression equations for these species result from the variable fractions of living stem and branch wood supporting live foliage, in shoots of a given size.

Cercidium microphyllum (paloverde) is a manystemmed, arborescent, leguminous desert shrub with compound leaves of minute leaflets; the leaves are produced in, and shed between, the rainy seasons. The bark is green, with stomata and a palisade-like chlorenchyma (Scott 1935); and the large area of bark was found to photosynthesize an amount comparable to that of the leaves in Cercidium floridum (Adams et al. 1967, Adams and Strain 1969). The seasonal timing of leaf production and radial stem growth are largely in-dependent (Turner 1963). The twigs are tapered green spines, and branching occurs as new such spiny twigs are formed. In manner of growth the whole shrub is thus a multiply-branched and compounded spine. Because the shrub is branched to near ground level, branches cut near ground level were taken as "shoots" for dimension analysis, and the basal diameters of the short main stem and of the branches from it were measured instead of diameter at breast height. Mature shrubs in the spinose-suffrutescent desert (sample 55) from which the analysis plants were taken and the paloverde-bursage desert (56) had basal diameters of 10-25 cm, heights of 2.0-3.5 m. Wood rings of Cercidium and other desert shrubs are interpretable (Shreve 1911), but often not with assurance.

Larrea divaricata (creosotebush) is the most important plant species of the North American warm deserts. Numerous slender stems rise from the root crown; their branches end in green twigs bearing bifid, evergreen leaves that lack spongy tissue but are not otherwise evidently xeromorphic (Runyon 1934). As the twig elongates, several pairs of leaflets are produced in a year's growth. The ratio of fruit to current twig and leaf production in a Mojave desert was 0.154 (Soholt 1973). The plant is evergreen and has been shown to be continuously photosynthetic at a low rate during dry seasons (Strain and Chase 1966, Strain 1969, Oechel et al. 1972). During severe drought some, but not all, leaves are shed and some shoots die back to ground level. The stems in the sample ranged up to 2 cm, and a few to 3 cm in diameter at 10 cm above ground level; shrub heights were mostly 0.5-1.5 m, a few to 2.3 m. The wood rings were interpreted as annual; on the basis of them the shrubs in this sample add 7-10 leaf-nodes to the stem axis per year. Despite its remarkable adaptation to desert climates, creosotebush is unremarkable in its dry weight and growth distributions and other relationships in Table 2.

Fouquieria splendens (ocotillo) consists aboveground of numerous (usually 5-20) long, nearly cylindrical, spine-armed wands that extend in varied directions and angles to the horizontal from the root crown at the ground surface. The stems taper gradually from basal diameters and ages of 2.0-2.5 cm and 20-25 yr in older stems, to 0.5-0.7 cm in current twigs. The stems sampled from the spinose-suffrutescent desert (sample 55) were 0.6-3.6 m long; some longer and taller stems (over 4 m) occur in the desert grassland (sample 54). During the rains soft, ephemeral leaves 1-2 cm long are put out along much or the whole length of the stem; the leaves are lost when the rains end (Cannon 1905). Two or three sets of leaves may thus be produced in a year; the leaf production in Table 2 assumes annual leaf production twice that sampled in the summer rainy season. Annual segments are clearly defined in all but the oldest stems and can be clearly related to wood rings. The bark includes a thick chlorenchyma (Scott 1932), and bark dry weight and growth exceed wood dry weight and growth in all but the old stems. The bark chlorenchyma is photosynthetic during favorable periods, apparently not during drought (Mooney and Strain 1964). Assuming no branches (though a few stems of F. splendens are branched) and two leaf growths per year. then stem wood, stem bark, and leaves each include about one-third of aboveground growth with a smaller, unmeasured fraction in flowers and fruits.

Two of the desert low shrubs or semishrubs, Encelia farinosa (brittlebush) and Franseria deltoidea (bursage), were sampled on a less intensive basis. Fifteen individual shrubs were obtained with root crowns, and the aboveground shoots were treated as sample branches. Both species average about 0.3 m tall in the spinose-suffrutescent desert (sample 55) from which Encelia was taken, and the paloverde-bursage desert (56) from which Franseria was taken. Drought adaptation of Encelia is discussed by Shreve (1964), Strain and Chase (1966), Cunningham and Strain (1969a), and Strain (1969); the species is able to increase light utilization for photosynthesis up to the highest light intensities (Cunningham and Strain 1969b). The analyses of these shrubs suggest that the ratio of "branch" growth (of aboveground perennial wood and bark) to "clipping" growth (of current twigs with leaves) is about 25:75% in Encelia and 21:79% in Franseria.

Measurement and estimation techniques

The production samples were based on the 0.1-ha quadrats used also by Whittaker (1963, 1966) and Whittaker and Woodwell (1969). In each stand all trees were measured and recorded by diameter at breast height and species and all shrubs were tallied by species in a rectangle 10 m on each side of a 50-m tape. Heights were measured and increment borings taken from all trees or (in the denser forest stands) all trees above 30 cm dbh and some of the trees, as samples by size classes, below that diameter. Woody stems over 1.5 cm dbh including those of arborescent shrubs were tallied with the trees; those under 1.5 cm dbh were tallied and clipped as shrubs. The arborescent shrubs of the semideserts were treated as trees, and heights and diameters were measured for the larger cacti (Carnegiea, Opuntia, Ferocactus). Undergrowth clippings were taken from twenty 0.5 × 2.0 m subquadrats, random numbers of meters out from points at 5-m intervals along the central tape. The aboveground growth of herbs, and current twigs with leaves of shrubs, were clipped in the subquadrats, bagged by species, and weighed fresh and ovendry. Minor herb and shrub species missed in the subquadrats were clipped in the full 0.1-ha quadrat. In the low-elevation stands clippings were taken of both summer herbs and shrub growth (1964) and spring herbs (1965). Light penetration through the tree, shrub, and herb strata was measured at 50 points along the central tape with a Weston sunlight illuminometer, and plant-individual point coverage was recorded for these sample points. In the nonforest samples light penetration and coverage were read also along the 50-m borders of the quadrats, hence for 150 points in all. We adapted the sample to the creosotebush desert by measuring diameters, heights, and numbers of stems for the shrubs in the 0.1 ha, and measuring stem diameters at 10 cm above ground level for all shoots of 20 random shrubs within the plot.

The eight woody species of the woodlands and deserts just described were subjected to intensive aboveground dimension analysis by the procedures of Whittaker (1961, 1962) and Whittaker and Woodwell (1968). Trees of two species (Quercus hypoleucoides and Pinus cembroides) were felled, and a tape was laid along the stem from apex to base. Branches were tallied from the tip downward by age and basal diameter, and five sample branches per tree were taken for more detailed measurement of length, current twig number, and fresh and dry weights of live wood and bark, deadwood and bark, current twigs with leaves, older leaves by ages, and fruits. The stems were cut into segments or logs, and for each of these length, diameters, bark thickness, and fresh weight were recorded, and a 10-cm basal disc was taken for measurement of fresh and dry weight of wood and of bark, wood mean diameter and bark mean thickness, age, and mean radial wood increment for the last 10 or the last 5 yr. The shoots of shrubs were treated in the same way, except that in the smaller shrubs stem segments were weighed fresh and dry and used for the measurements obtained from discs of the trees. Fruits were collected from all branches of a given plant, as well as the sample branches; and special twig samples were taken for measurement of leaf weights, areas, and chlorophyll content, and dry weight distribution between twigs, petioles, and leaf blades. The dimension analysis samples normally included 15 shoots of each species, but 10 each were taken from Arctostaphylos pringlei and A. pungens.

The data from these sample plants were submitted

to the computer program for dimension analysis developed at Brookhaven National Laboratory (Whittaker and Woodwell 1968, 1969, 1971). Regressions are calculated for the sample branches, relating the weights of branch fractions to branch basal diameter, and the weight of branch wood and bark to branch age. The regressions are used to calculate, from the tally of branch diameters and ages, the dry weights of wood and bark, current twigs with leaves, older leaves, and current annual growth of wood and bark (Whittaker 1965a) and older leaves (Whittaker and Garfine 1962), for all branches of each plant. The wood increment readings on discs or stem segments are used to calculate mean annual dry-weight growth of stem wood for the last 5 or 10 yr, and to estimate growth of stem bark from the ratio of current annual growth to mass for the wood, times the dry weight of the bark, for each stem segment. These and other calculations yield as results: (1) volume of stem wood and stem bark, (2) dry weight of stem wood, stem bark, branch wood and bark, current twigs and leaves, and older leaves, (3) annual dryweight growth of stem wood, stem bark, branch wood and bark, current twigs and leaves, older leaves, and fruits, and (4) surface area of stem wood, stem bark, branch bark (Whittaker and Woodwell 1967), and leaves. The program then computes, for the 15 or 10 plant individuals, regressions of these as dependent variables on one or more of the independent variables: (1) dbh, or basal diameter, (2) parabolic volume estimate, one-half basal area times plant height, (3) conic surface estimate, one-half basal circumference times plant height, and (4) estimated volume increment, one-half wood area increment at breast height (or 10 cm) times plant height.

In the final stages of the program these regressions are used to compute the various dependent variables for the trees (or shrubs) recorded in the sample quadrats; and the results are summed by species in each quadrat. Each dependent variable is computed from two or more regressions, using different independent variables, and the more appropriate regression is used. In most cases regressions on parabolic volume have been used to estimate biomass values and growth of current twigs with leaves, whereas regressions on estimated volume increment have been used for other production estimates (cf. Whittaker and Woodwell 1969). Since only a few species were subjected to dimension analysis, regressions thought most appropriate have been applied to other species. (The regressions for Quercus hypoleucoides have been applied to other oaks, those for Pinus cembroides to Juniperus deppeana, those for Arctostaphylos pringlei to Garrya wrightii, etc.) For lack of regressions for the larger trees in the Catalinas, regressions from the southeastern forests

TABLE 2. Mean dimensions of trees and shrubs for dimension analysis, Santa Catalina Mountains, Arizona

Dimension	Quercus hypo- leucoides	Pinus cem- broides	Cercocarpus brevi- florus	Arcto- staphylos pringlei	Arcio- staphylos pungens	Cercidium micro- phyllum	Larrea divari- cata	Fouquierio spiendens
. Mean shoot dimensions								
Number of shoots measured Diameter at breast height (cm)	15 7.65	15 8.43	15	10	10	15	18	11 1.49
Diameter at ground level (cm)			3.26	4.45	2.10	4.52	1.13	0.70
Height (m)	4.81	3.65	2.58	1.32	.71	2.00	1.31 12	2.70 21
Age (yr)	52.3	107	18.9	54.8	27 205	25 2,054	148	383
Dry weight total (g)	24,645	26,932	1,482	1,406	51.4	422	45.8	78.8
Net production (dry g/yr)	1,844	1,482	269	153 .38	.23	1.21	.56	2.99
Bark thickness (mm)	5.10	6.16	1.89 .64	.32	.32	.69	.33	.35
Wood radial increment (mm/yr)	.69 13.4	.39 1 8. 1	5.5	9.2	4.0	4.7	3.2	4.9
Biomass accumulation ratio	13.4	7.017	3.3	7.2	4.0	7.7	3.2	11.5
3. Volume (cm³)								
Parabolic volume estimate	21,444	19.356	1,641	1,246	139.4	2,242	114.6	312
True stem volume	24,014	25,424	1,305	1,049	87.6	1,280	95.5	653 328
Wood volume	17,854	19,247	980	1,014	83.4	1,120	79.6 8.88	16.2
Estimated volume increment	401	200	95.0	39.2 35.3	7.59 5.55	111 96	9.61	37.1
True volume increment	527	288	89.3	33.3	3.33	90	2.01	771.7
C. Surface (cm²)								
Conic surface estimate	7,037	5,764	1,510	972	243	1,583	286	707
Parabolic surface estimate	10,766	9,390	2,914	5,532	392	4,067	734	1 /15
Stem bark surface	9,231	8,811	1,643	1,032	186	1,418	313	1,415
Branch bark surface	71,960	122,322	33,467	3,252	1,507			
Shoot dry weight distribution,% in								
Stem wood	46.4	40.8	47.0	48.7	25.7	35.3	45.1	47.0
Stem hark	16.9	16.1	13.5	2.0	1.4	5.0	10.1	48.9
Branch wood and bark	24.3	30.7	29.4	30.5	30.6	56.9	28.4	
Current twigs and leaves	5.7	3.9	10.1	3.2	14.9	2.8	16.4	4.1
Older leaves	6.8	8.5		15.6	27.5			
E. Aboveground net production distribution, % in								
Stem wood	20.0	12.0	24.8	15.4	7.1	14.8	16.4	31.4
Stem bark	4.5	3.4	4.6	.5	.3	1.4	2.5	32.0
Branch wood and bark	27.9	25.1	30.3	22.7	16.5	48.7	21.2	
Current twigs and leaves	37.2	4 9.9	40.3	27.7	59.8	35.1	59.8	36.6
Older leaf growth	10.4	9,6		33.7	16.3			

were used: Pinus echinata (Whittaker et al. 1963) for pines, and Picea rubens biomass regressions (Shanks and Clebsch 1962) for the firs. Estimates of production and biomass are affected by high dispersions and by two sources of systematic error: a tendency to underestimation consequent on the logarithmic calculations (Crow 1971, Baskerville 1972, Beauchamp and Olson 1973) and a tendency to overestimate values for the largest individuals and consequently for samples (Ogawa et al. 1965, Whittaker and Woodwell 1968). Because these errors are of opposite direction, corrections for the logarithmic calculations have not been used here.

The production estimates for the forest trees were based primarily on calculations from estimated volume increments as described by Whittaker (1966). Production estimates for woodland trees and all arborescent shrubs were based on dimension analysis regressions. Estimates of production of smaller true shrubs used the clipping weights of current twigs with their leaves, times ratios of aboveground pro-

duction to clipping production from the dimension analyses. Estimates for suffrutescents or semishrubs used the clipping measurements times the ratios given for Encelia farinosa and Franseria deltoidea. Estimates for Opuntia were based on counts of new segments in the quadrats times mean dry weights per segment; production values for other cacti were based on volume and mass calculations, and division of the masses by age estimates. Production of herb species was based directly on quadrat clippings during the peak of summer growth and, in the woodlands and lower elevation communities, quadrat clippings taken also during winter or spring herb growth.

Many of the tree and shrub estimates are based on relationships for a different species, or the same species in a different sample. Leaf, twig, and chlorophyll data are limited to a few species. Annual wood rings are difficult to interpret in the woodland and desert samples, and very difficult or impossible in the open oak woodland; some of the growth rates

europian	ative error in the to imate) for logarithm 10 cm above ground Currow Applementes	Pinus C Indivales t	erzacarpus A pravifilieni	rerossephylas epp.	Curcidium microphylium	James Districts
ryresiaa Abole-aboar regress	sions on log basel of	liameter, r (co	1	a lû cas abave	ground level	
.og. shoot height,	v fem)				_	2.0515 1.0430
Ā	1.1776 0.4875 0.970	2.1132 0.5022 0.914	2.034d 0.7444 0.914	1.6311 0.7374 0.894	1.6473 0.6682 0.814 1.726	0.930 1.252
E	1.114	1.163	1.182	1.100		
Log, stem volume. A B	7,59[2 1,8593 1,8593	2.6454 1.7586 0.990	1.1623 2.7 09 1	0.8687 3.1586 0.956	[,2546 1,6180 0.978	1.5675 3.0012 0.984
a ! E	0,997	0.990	0.984	0.956 1.601	0.978 1.262	(.343
Lag, stem wood w	olumbe, y (cm²)		1 4719	0.8325	(.1919	1.4850
A F	2.4449 1.8701 4.997	1.3966 (.1730 0.491	1.4739 1.7358 0.984	0.8325 0.956	1.1919 1.6567 0.978	1.4850 2.9710 0.982 1.366
é.	1.150	0.991	1.292	1.611	1.266	
Log, stem sunface,	y (<m*) 1.9700</m*) 	2.8903 .1200	2.2767 1.7369 0.975	1.5397	1.96[1 1.729[1,1771 2,0089 0,968
A B	1.9700 1.1104 0.997 1.084	0.992	0.975	0.931 (.531	0.940 1.307	1.330
E Las, branch sutta	ce. v (em*)			9.624#		
Å B	3.1942 1.7069	3.4677 1,5843 0.949	3.4441 1.9169 4.961	2.6318 2.1032 0.93(
r B	0.970 1.455	1.430	[.323	1.151		
Log, seen dry we		1,4441	1.5139	0.4863 3,1259 0.970	1.1167	1.5165
A B r	(.6933 0.998	1.7719 0.991 1.178	1.5139 2.5992 0.987 1.232	0.970 L.469	1.1167 2.6662 0.956 1.406	1.9719 0.980 1.392
E Lag, stem wood	(.(d)) Aru sweight, v (g)					1.4292
B Y	1.74/19	1,1746 1,8600 .	1.3931 2.62[3 0.986	0.6610 3.1402 0.970	1.2957 2.3855 0.964	2.9544
c E	(.9010 0.998 1,121	1,1746 1,8800 . 0,991 1,184	0.986 1.252	1.470	1.348	1,420
Log, stem bark d	(g) weight, y (g)	7.0695	0.8977	-0.(068	0.2773	0.6745
B A	(.6236 1.8673 0.997	1.5015	9.8977 2,5208 0.986	2.0857 0.249	2.5121	3.0113 0.848 2.052
É	L.146	(.20L	1,243	1.470	1.498	
	d and bark dry wo (.9187 (.9353	ight, y (g) 2.2(07 1.6915 0.946	1.4406	0.9153 2.4709 0.657	1.7653	1.1623
A B E	1.9353 0.969 1.545	0.946 1.483	0.961 1.357	0.857 1.081	0.918	0.820 1.579
E Log older feel o	dry weight, y (8)			1.2795		
A B	1.0387 0.9376	2.1485 0.6529 0.879		0.528		
Ē	1.212	1.475		1.532		
Log, shavegrous	id dry weight, y (8 2.6775 1.7728	1.7593	L.8794	1.1492	1.8979	1.1712
Å ·	0.994	1.7593 1.6563 0.978 1.271	2,2999 0,991 1,173	(.(492 2,7761 0,967 (,432	2,0835 0.953 1.318	0.946
E se stem stukid	(.186 production, y (8/)	o	•			0.6817
Y	[,5251 ,1486		0.81/8 1.8878	-0.2136 1.2273 0.886 [,776	0.4110 2.0575 0.911	2.2367 0.972
Ē	0.964 1.322	0.903 1.300	d.968 1.215	[,774	0.913	1.345
Log. stem bark	graduction, y (8/9		-0.9286	-1.4757	-0.4919 2.1351	-1.1104
B	0.2571 1.1771 6.977 1.255	0.934	1.8991 4.971 (.270	0.541 0.561 1.680	0.901 1.545	(.8991 0.953 (.391
E Log, branch we	1.255 and and back produ	1.332 ctjan, v (8/yr)	1.270			
Å	1.2536	1.3438	L.9467 L.5989	0.3470	1.6134 0.9954 0.719	0.8247 1.4772 0.914
r E	0.951	0.925	1.5989 0.957 1,280	0.815	1.495	1,430
Log, current to	vie and leaf produc	1.7755	13413	0.493[*	1.044	1.2807
ê	1,9218 4,9386 4,975	0.962	1.2413 1.6461 0.958 1.248	6.493[* t.t612 0.667* t.640	1.1344 1.5400 0.915 1.307	1.54 86 0.932 1.390
E	1.112	1.239	1.248			
	und net production, 1.2929 (.0764	2.0234 1.1825	(.5552 (.5935	1.0520 0.736	L.6974 L.3727	1.4947 1.6238 0.949
A E	0.981 1.208	0.964 1.250	0.979	0.734	0.867 1.39 L	1,345
Regressions on Linear, stem v	n parabolic volume, volume, v (em²)	* (cm,)				
4	4817.6	5099,9 1.0501	76.03 0.7483 0.994	49.58 0.7198 0.951 0.465	120.91 0.5[71 0.9 1 2	1.078 0.114 0.969
ь с	0.8952 6.979 0.267	0.991	0.994	0.931	0.193	0.190
Linear, stem	wood volume, v (si	m,)	72.24		120.93	0.945
8	3175.7 0,6845	3021.3 0.5381 0.590	74.69 0.3514 0.995	41.28 4.7020 0.933	120.93 0,4457 0.979	0,945 889.0 889.0
:	0.283	0.210	0.(11	0,933	0.208	0.195
Linear, slem	dry weight, 5 (6) 2969.7	1249.9	105,59	4.515 0.5286 0.963	147.71 0.3948 0.905	4.316 0.695 0.981
i	2969.7 0.6115 0.977 0.284	3249.9 0.6127 0.987	105,39 0.5321 0.995 0.110	0.963 0.979	0.905	0.981 0.238
•	0.284 h wood and back o	6.219 Inv Weight, 9 (6				
Linear, beans b	(382.0		(38.47 0.1590 0.895 0.395	-57.19 0.5145 0.946	541.6 0.2169 0.816 0.316	-6.663 0.493 0.918
t c	1382.0 0.1620 0.872 0.719	0.5076 0.981 0.360	0.895	0.946 0,554	0.336	0.594
Lag, stein de	wwishr. v (s)			_0.2300	-0.2691	-0.093
ê	0.9667 0.7186	1.2261 0.7026 0.967	_0,0167* 0,9465 0,994	7 -0.7290 1.1456 0.982 1.348	-0,2692 0,9782 0,958 1,396	-0.09 0.98 0.99
E	0.996 1.161	1.716	1.163	1.346	1.396	1.23
Log, branch	wood and bark dri	1.0918	0.2408	-0.229[0.9441	-0.20 0.89
B .	0,4606 0,7732 0,964	0.6668 0.917	0.2408 0.7452 0.954 (.392	-0.229[0.9181 0.879 1.968	0.9441 0.6339 0.901 1.418	0.99 0.91 1.90
E	1.595	1.530	(.392			
ட் து, வரண் A B	(wig and leaf dry	1.0325 0,4411	0.4023	0,5130 ,4353	0.3383 0.5570 0.913 1.330	0.45 0.50 0.92
r	0.3991 0.970 (.244	0.956	0.5203 0.952 1.264	1.633	0,913 1,330	0.92
E F	would describe					
	1.3557 0.7095	(8) 1.6533 0.6536 0.973 (.3 6 7	0.5280	-0.107 1.019 0.961 1,373	0.8245 9 0.7609 0.952 1.313	0.50 0.67 0.93
Ê	0.7695 0.991	0.6556	0.8334 0.992		0.017	0.91

TABLE	 Continued 			
cymbrolder ØMus	Cerzacareus hieriffacie	Arevosianhydes ipp.	Cetzidhen misraphillett	Lames diversity is
increment, r (co	œ⁵/yr}			

	Austries Appaleucations	establisher establisher	Cerzacarpus hieriffaces	∠revoslaphysles spp.	Ceraidhen miseaphillen	Lames
Regression	timaled volume inc					
Lines stem wood	t production, v (6)	/yr)			A 7745	0.4611
	45.59	34./0	(5.0 1 0.5790 0.977	2.037 0.4970	6.745 0.5657 0.935	0.4631 0.9058
9	41.59 0.7877 0.976 0.157	0.6922	0.917	0.4970 0.947 0.452	0.935	0.973 0.208
è		9. (60	0.158	Q.43 £	4.344	
Lincar, stem bark	production, y (g/	yr)	0.2141	0.1134	0.8111	0.0263
à		0.1519	0.01167	0.0060	0.811 [0.0533 0.875	0.0196 0.931
r	0.1656 0.950 d.241	16.02 0.1519 0.937 0.317	0.9116' 0.920 0.350	0.0060 0.754 0.542	0.474	0.322
ě.						
	and and back prod	_55.67	18.76	6.100 0.6743 0.943 0.338	0.5253 0.593	2.017 0.80 6 0 0.933 0.315
<u>.</u>	(.5626	-55.67 2.419 0.918	0.6761	0.6743	0.593	0.933
r e	-40.96 1.7d26 0.854 0.329	0.633	0.6761 0.974 0.171	0.398	0,403	0.315
	wig and leaf produ	etion, v (a/yr)				4.502
A CHITCHE	91.12	193.9	43.54	23.17 0.1701 0.663 0.370	74.37 0.669\$	2.517
6	0.4100	0.909	0.6262	0.665	0.84L 0.311	0.948
!	0.611 0.374	0.909 0.43 [0.301	0.570	0.312	0.244
	production, y (R/)	rr)			0.1404	0.04583
Y Y	0.6603	0.4915	0.1352	-0.1784 0.9421	-0.1403 0.9716 0.925	0.9272
	0.6603 0.7383 0.991	0.485	0.984	0.88C	0.925	0.980
Ē	1.152	1,175	1.191	1.601	1.931	,
	production. y (g/y	r)		14444	-0.1842	-1.4398
Y Y	0.01565 0.7377	0.2503	-0.6000 0.6779 0.979	-1.3366 0.69 2 2	0.9777	0.7704
	0.7377	0.2803 0.6174 0.927 (.353	0.779	0.768	0.9727 0.873 1.626	0.94[
Ē	0.979 (.243	[,353	1.225	1.949	1.049	,
Log, branch was	od and hark produ	ction, y (g/yr)	A 6041	0.2174	1,4591	0.4167
¥	0.7478 0.7664 0.933	1.0635 0.6621	0.5004 0.7785 0.951	0.3374	1.4593 0.4103	0.5946
т	0.933	0.855	0.951 1.299	0.148	0.637	1.412
E .	1.516	1.625	1.799	1.783		
Log. current tw	ig and leaf produc	tion, y (g/yr)	4 7847	0.9014	0.8724	0,6594 0,6131
À	1,2485 0,6086 6,950	0.5615	0.7840 0.6381 0.921		0.6474 0.634 1.469	0.6[3] 0.898
	0.910	0.858	0.921	0.840 [,351	1.469	(.493
je.	1.325		1.371			
Log, shovegrous	a net production,	y (g/yt)	1.0152	1.1633	1.4546	1.0479 0.6503 0.924
A B	L.5464 0.6645	0.6219	1.0157 0.7224	1.1633 0,5182 0.846	0.5913	0.6503
r	0.6647 0.967	0.898	0.968	0.846 1.459	[,481	1.430
iB.	1.282	[,443	1.230			
D. Regressiens on	conte surface estic	nate, r (¢m°)				
Linear stem ha	uk surface, y (emi	1		9.5674	. 50 16	-10.69
			96.84 1.0239	9.3014	58,35 0.9329	1.1320
	1797.0	[840.9				
è	1797.0	[340.9 [.2092 9.992	ተዋል ነ	0.9167	0.986	0.210
	1.0564* 0.991 0.405	[840.9 1.2092 0.992 0.104	0.997 0.058	0.934	0.986 0.137	-10.69 1.1320 0.978 6.210
а С Ф	1.0364* 0.991 0.405 surface, y (em²)	1.2092 0.992 0.104	0.997 0.058	0.321	0.986	0.0652
b r e Log, steen bank	1.0364* 0.991 0.405 surface, y (em²)	1.2092 0.992 0.104	0.997 0.058	0.321	-0.137 -0.137	0.0652
b C E Eog. 51883 bark A B	1.0564* 0.991 0.405 : surface, (* (*m*) 1.1509 0.7444 0.997	1.2092 0.992 0.104	0.997 0.058 0.04642 0.9987 0.996	0.321 -0.7175 1.3720 0.954	0.986 0.137 -0.1507 1.0303 0.984	0.0652
Engl. Steen bark B	1797.0 1.0564* 0.991 0.405 : sux(=ec. } (em*) 1.1509 d.7444 d.997 1.077	1.1050 0.992 0.104 1.1950 0.7342 0.992 1.100	0.997 0.058	0.321	-0.137 -0.137	0.0652 0.9136
A Seem bark A A Log, branch b	1797.0 1.0564* 0.991 0.105 : surface, y (cm²) 1.1509 0.7444 0.997 1.077	1.1992 0.992 0.104 1.1950 0.7342 0.992 1.100	0.997 0.058 0.94642 0.9987 0.996 1.089	0.321 -0.7275 1.2720 0.954 1.416	0.986 0.137 -0.1507 1.0303 0.984	0.0652 0.9136
A Seem bark A A Log, branch b	1797.0 1.0564* 0.991 0.105 : surface, y (cm²) 1.1509 0.7444 0.997 1.077	1.2991 0.992 0.104 1.1950 0.7342 0.992 1.100	0.997 0.058 0.04642 0.9987 0.996 1.089	0.321 -0.7275 1.2720 0.954 1.416	0.986 0.137 -0.1507 1.0303 0.984	0.0652 0.9136
Log, steen bark A B C Log, branch back A B C C C C C C C C C C C C C C C C C C	1797.0 1.0364* 0.991 0.405 surtlace, > (cm²) 1.1309 0.4097 1.377 0.4097 1.377 0.961	1.2991 0.992 0.104 1.1950 0.7342 0.992 1.100	0.997 0.058 0.04642 0.9987 0.996 1.089	0.321 -0.7275 1.2720 0.954 1.416	0.986 0.137 -0.1507 1.0303 0.984	0.0652 0.9136
A Seem bark A A Log, branch b	1797.0 1.0564* 0.991 0.105 : surface, y (cm²) 1.1509 0.7444 0.997 1.077	1.1992 0.992 0.104 1.1950 0.7342 0.992 1.100	0.997 0.058 0.94642 0.9987 0.996 1.089	0.321 -0.7175 1.3720 0.954	0.986 0.137 -0.1507 1.0303 0.984	0.0652 0.9136
Log, green bark E Log, branch ba A E Log, branch ba E E	1797.0 1.0364* 0.991 0.405 surtiace (cm²) 1.1309 0.444 0.997 1.977 urk surtiace (cm²) 0.4097 1.1375 0.961 1.536	1,2092 0,992 0,104 1,1950 0,7342 0,992 1,100 1,1459 1,1459 1,0228 0,931 1,514	0.94642 0.94642 0.9387 0.996 1.089 1.1281 1.06(1 0.945 1.396	0.321 -0.7275 1.2720 0.954 1.416	0.986 0.137 -0.1507 1.0303 0.984	0.0652 0.9136
E. Log, steen bark A. B. F. Log, branch bark A. B. F. Log, branch bark B. F. F. Branch research	1797.0 1.03544 (0.931 (0.931 (0.405) 1.045 1.1099 1.1099 1.077 1.077 1.077 1.1377 0.961 1.333 1.334 1.334 1.334	1340 y 1.2092 9.992 9.992 0.104 1.1950 0.7342 0.992 1.190 1.100 1.	0.997 0.058 0.94642 0.9287 0.996 1.029 1.1281 1.0641 0.945 1.396	0.321 -0.7175 1.2720 9.54 1.416 (.2725 9.7401 9.740 1.803	0.985 0.137 -0.1597 1.0303 0.984 1.145	0.0652 0.913 0.918 1.193
Log, seem bark A B F Log, branch b: A B F E Log, branch c: Cog, franch ccock Log, franch ccock	1797.0 1.03544 (0.931 (0.931 (0.405) 1.045 1.1099 1.1099 1.077 1.077 1.077 1.1377 0.961 1.333 1.334 1.334 1.334	1340 y 1.2092 9.992 9.992 0.104 1.1950 0.7342 0.992 1.190 1.100 1.	0.997 0.058 0.94642 0.9287 0.996 1.029 1.1281 1.0641 0.945 1.396	0.321 -0.7175 1.2720 0.954 1.416 (.2725 0.7401 0.740 1.803	0.985 0.137 -0.1397 1.0303 0.984 1.145	0.0652 0.913 0.918 1.193
E.O.S. Steen bark A.B. [P. Log., branch b: A.B. T. E. B. Steench recession	1797.0 1.03544 (0.931 (0.931 (0.405) 1.045 1.1099 1.1099 1.077 1.077 1.077 1.1377 0.961 1.333 1.334 1.334 1.334	1340.99 1.2092 0.992 0.104 1.950 0.7352 0.992 1.100 4) 1.457 6.922 0.931 1.31d	0.997 0.058 0.94642 0.9287 0.996 1.029 1.1281 1.0641 0.945 1.396	0.321 -0.7175 1.2720 9.54 1.416 (.2725 9.7401 9.740 1.803	0.985 0.137 -0.1597 1.0303 0.984 1.145	0.0612 0.918 0.918 1.491
Log, 12000 bark Log, 12000 bark Log, branch b: A B E Log, branch regress Log, branch w	1997.0 1.0564- 0.991 1.0564- 0.991 1.1509 0.7444 0.997 1.097 1.097 1.0961 1.356 0.961 1.356 0.961 1.356 0.961 1.356	(1940.3) 1.2092. 9.292. 9.104 1.1950. 0.7342. 0.992. 1.190 4) 1.1497. 1.2497. 1.31d 1.31d 1.31d 1.4979. 2.7146. 0.9356. 0.9356. 0.9356. 0.9356.	0.997 0.018 0.94642 0.9987 0.996 1.089 1.1281 1.0611 0.945 1.396 (cm)	0.321 -0.7175 1.2720 0.954 1.416 (.2725 0.7401 0.740 1.803	0.986 0.137 -0.(\$97 1.0303 0.984 1.145	0.0612 d.9136 0.916 1.193
E. Branch, rearch w	1997.0 1.0564* 0.931 0.931 0.408* 0.1504 0.408* 0.408* 0.408* 0.4744 0.397 1.077 0.409 0.4097	(1940.3) 1.2092. 9.292. 9.104 1.1950. 0.7342. 0.992. 1.190 4) 1.1497. 1.2497. 1.31d 1.31d 1.31d 1.4979. 2.7146. 0.9356. 0.9356. 0.9356. 0.9356.	0.997 0.478 0.94642 0.9287 0.928 1.0261 1.0261 0.945 1.396 (cm) -3.1148 2.8165 0.951	0.321 -0.7175 1.2720 0.954 1.416 (.2725 0.7401 0.740 1.803	0.986 0.137 -0.1507 1.0303 0.984 1.145	0.0522 0.9134 0.918 1.193 -1.501 2.444 0.931
E. E	1997.0 1.0541 0.981 1.0541 0.981 1.1091 0.7444 0.744 1.077 1	(1940.3) 1.2092. 9.292. 9.104 1.1950. 0.7342. 0.992. 1.190 1.1497. 1.190 1.151d 1.51d 1.51d 1.51d 1.9196. 1.91	0.997 0.018 0.94642 0.9987 0.996 1.089 1.1281 1.0611 0.945 1.396 (cm)	0.321 -0.7175 1.2720 0.954 1.416 (.2725 0.7401 0.740 1.803	0.986 0.137 -0.(\$97 1.0303 0.984 1.145	0.0612 d.9136 0.916 1.193
Log, trest bark A B E Log, branch to A B E Log, branch to A B T E Branch regress Log, franch w A B Log, current to A B	1997.0 1.049: 1.049: 1.040: 1.040: 1.040: 1.040: 1.040: 1.077 ark surface, y (cm.) 1.	(1940) 1.1950 0.104 1.1950 0.7342 0.7352 1.100 1.1950 0.7342 1.100 1.110	0.997 0.018 0.94642 0.9987 0.998 1.089 1.0511 0.945 1.394 (cm)	0.321 -0.7375 0.954 1.416 (.2725 0.740) 0.740 1.803	0.985 0.137 -0.10303 0.984 1.145	0.0522 0.9134 0.918 1.193 -1.501 2.444 0.931
E. E	1997.0 (1044) 1.044) 1.045) 1.0401 1.0401 1.0401 1.0401 1.0401 1.0407 1.	(1940) 1. 1950 0. 104 1. 1950 0. 104 1. 1950 0. 7342 0. 792 1. 100 1. 1. 100 1. 100	0.997 0.032 0.94642 0.932 0.932 0.935 1.084 0.945 1.396 (cm) -2.1346 0.951 -2.0078 1.997 0.843 0.951	0.321 -0.7375 0.954 1.416 (.2725 0.740) 0.740 1.803	0.985 0.137 -0.10303 0.984 1.145	0.0522 0.9134 0.918 1.193 -1.501 2.444 0.931
Log, seem bark A B E Log, branch to A B F E Branch regress Log, branch w A B r Log, branch to A B C Log, branch to A B	1997.0 (1044) 1.044) 1.045) 1.0401 1.0401 1.0401 1.0401 1.0401 1.0407 1.	1940 7992 4992 4992 4992 4992 4992 4992 4992	0.94542 0.94542 0.995 0.996 1.089 1.1251 1.0561 0.9545 1.196 (cm) -3.1148 2.4165 0.951 -2.0078 1.997 0.843	0.321 -0.7375 0.954 1.416 (.2725 0.740) 0.740 1.803	0.985 0.137 -0.10303 0.984 1.145	0.0522 0.9134 0.918 1.193 -1.501 2.444 0.931
E. E	1997.0 1.049: 1.049: 1.040: 1.040: 1.040: 1.040: 1.040: 1.077 ark surface, y (cm.) 1.	(1940) 1. 1950 0. 104 1. 1950 0. 104 1. 1950 0. 7342 0. 792 1. 100 1. 1. 100 1. 100	0.997 0.038 0.94642 0.9387 0.9387 0.938 1.028 1.028 1.024 1.024 1.024 1.346 0.951 1.346 0.951 1.267 0.951 1.267 0.951 0.	0.321 -0.7175 1.2720 0.954 1.416 (.2725 0.7401 0.740 1.803	0.985 0.137 -0.10303 0.984 1.145	0.0522 0.9134 0.918 1.193
Log, trem bark A Log, trem bark B E Log, branch to Cog, french w B T T Log, current d B T Log, branch to B T Log, branch to Cog, branch to C	1997.0 1.044: 1.044: 1.045: 1.046: 1.046: 1.046: 1.046: 1.046: 1.046: 1.047: 1.047: 1.047: 1.047: 1.047: 1.047: 1.047: 1.049: 1.036: 1.	1966 1992 0 992 0	0.997 0.038 0.94642 0.9387 0.9387 0.938 1.028 1.028 1.024 1.024 1.024 1.346 0.951 1.346 0.951 1.267 0.951 1.267 0.951 0.	0.321 -0.7375 0.954 1.416 (.2725 0.740) 0.740 1.803	0.985 0.137 -0.10303 0.984 1.145	0.0522 0.9134 0.918 1.193
E. Branch regress to A B r Log, current to B r P P Branch regress T P B B B B B B B B B B B B B B B B B B	1997.0 1.049: 1.049: 1.049: 1.049: 1.109: 1.109: 1.109: 1.109: 1.137: 1.139: 1.	1960 1992 0 992 0	0.997 0.94642 0.9397 0.9387 0.9367 0.936 1.0581 0.945 0.9	0.321 -0.727 1.2720 0.534 1.416 0.764 0.764 1.801 -1.3009 2.3101 0.944 0.794	0.986 0.137 -0.1597 1.0303 0.303 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145	0.0575 0.9434 0.9438 0.9438 1.193 -1.501 2.444 0.531
E. Branch regress Log, branch & B C C C C C C C C C C C C C C C C C C	1997.0 1.0543- 0.1653 0.1655 0.1655 0.1657 1.1579 1.1577 1.1577 1.1577 0.961 1.1575 0.961 1.1575 0.961 1.1575 0.961 1.1575 0.961 1.1575 0.961 1.1575 0.961 1.1575 0.961 1.1575 0.961 1.1575 0.961 1.1575 0.961 1.1575 0.961 1.1575 0.961 0.1580	1960 1992 0 992 0	0.997 0.04642 0.9387 0.9387 0.9387 1.0581 0.945 1.0581 0.945 0.945 1.399 1.1248 2.415 2.617 0.681 0.951 0	0.321 -0.727 1.2720 0.534 1.416 0.764 0.764 1.801 -1.3009 2.3101 0.944 0.794	0.886 0.137 -0.1597 1.0303 1.0303 1.145 -1.4980 2.0302 0.836 0.836 0.790 0.790	0.0572 0.9434 0.9434 0.9434 1.191 -2.503 2.444 0.931 -1.255 1.449 0.745
Log, trem bark A Log, trem bark A E Log, branch to E E Branch regress F Log, current 6 B F Log, branch b B F P Branch regress F Branch regress Branch A Branch	1997.0 1.049: 1.049: 1.049: 1.040: 1.040: 1.040: 1.040: 1.040: 1.047: 1.047: 1.040: 1.	1960 1092 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.997 0.038 0.94642 0.9387 0.9387 0.938 1.028 1.028 1.024 1.024 1.024 1.346 0.951 1.346 0.951 1.267 0.951 1.267 0.951 0.	0.321 -0.7375 0.954 1.416 (.2725 0.740) 0.740 1.803	0.985 0.137 -0.10303 0.984 1.145	0.0575 0.9434 0.9438 0.9438 1.193 -1.501 2.444 0.531
E. Branch regress to be	1997.0 1.0343- 0.1605 0.1605 0.1605 0.1605 0.1607 0.1509 0.997 1.077 ark surface, y (cm) 1.1572 0.961 1.1572 0.961 1.356 0.008	1900 1092 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.997 0.04642 0.9387 0.9387 0.9387 1.0581 0.945 1.0581 0.945 0.945 1.399 1.1248 2.415 2.617 0.681 0.951 0	0.321 -0.727 1.2720 0.534 1.416 0.764 0.764 1.801 -1.3009 2.3101 0.944 0.794	0.886 0.137 -0.1597 1.0303 0.903 1.145 1.452 1.452 1.6527 0.856 0.790	0.0572 0.9334 0.934 1.193 -2.302 -2.444 0.531 -1.255 1.449 0.745
Log, tresp bark Log, tresp bark Log, branch bi E E Branch regress Log, branch w T I Cog, current of B T Log, branch b B T Log, branch b C C C C C C C C C C C C C	1997.0 1.049: 1.049: 1.049: 1.040: 1.040: 1.040: 1.040: 1.040: 1.047: 1.047: 1.040: 1.	1980 1099 1 0992 0 0992 0 104 1 1992 0 104 1 1992 0 1992 1 1099 1	0.94642 0.94642 0.9397 0.9397 0.9397 0.9397 1.1281 1.1281 0.945 1.399 (cm) 1.1465 0.945 0.	0.321 0.721 1.2720 0.534 1.416 0.724 0.724 0.724 0.724 1.801 1.202 1.401 0.944 0.794 0.344 0.794	0.886 0.137 -0.1597 1.0303 0.903 1.145 1.452 1.452 1.6527 0.856 0.790	0.0572 0.9513 0.9513 0.9513 1.197 -2.503 -2.444 0.931 -1.255 1.499 0.745
Log, seem bark A B E Log, branch bi A B T E E Branch reards A B T Log, branch w A B T Cog, branch w B T Cog, branch bi B B T P Branch reards B B B B B B B B B B B B B B B B B B B	1997.0 1.0343- 0.1605 0.1605 0.1605 0.1605 0.1607 0.1509 0.997 1.077 ark surface, y (cm) 1.1572 0.961 1.1572 0.961 1.356 0.008	1980 1992 0 992 0	0.997 0.04642 0.9387 0.9387 0.9387 1.0581 0.945 1.0581 0.945 0.945 1.399 1.1248 2.415 2.617 0.681 0.951 0	0.321 0.721 1.2720 0.534 1.416 0.724 0.724 0.724 0.724 1.801 1.202 1.401 0.944 0.794 0.344 0.794	0.886 0.137 -0.1597 1.0303 1.0303 1.145 -1.4980 2.0302 0.836 0.836 0.790 0.790	0.0572 0.9334 0.934 1.193 -2.302 -2.444 0.531 -1.255 1.449 0.745

must be considered estimates, not measurements. It may be taken for granted that these growth rates, and clipping productions for herbs and low shrubs, vary significantly between years of drought and those of higher rainfall. The study should be considered a series of careful estimates of aboveground biomass and production from detailed information on the quadrats, but not systematic measurement such as applied at Brookhaven (Whittaker and Woodwell 1968, 1969) and Hubbard Brook, New Hampshire (Whittaker et al. 1974). No root data were obtained in this study. Estimates of likely root-shoot ratios from the literature (Whittaker 1962, 1966, Chew and Chew 1965, Rodin and Bazilevich 1967, Whittaker and Marks 1975) have been used to suggest total, as well as aboveground, productivity and biomass in Table 4 and some of the figures.

RESULTS

Sample plant means and regressions

Table 2 summarizes mean dimensions, including dry weight mass and annual growth and the distribution of these in aboveground tissues, for the sets of sample plants. All values are arithmetic means, to permit comparisons with the similar summaries of Whittaker (1962), Whittaker and Woodwell (1968), Whittaker et al. (1974), and Andersson (1970, 1971).

Some of the regressions from the dimension analysis are summarized in Table 3. Because of their close similarity of form, the 10 sample shoots each of Arctostaphylos pringlei and A. pungens were combined to compute the Arctostaphylos regressions given. Dispersions from the regression lines are indicated both as r (coefficient of correlation) and E (estimate of relative error). E is the antilog of the standard error of estimate for a logarithmic regression (Whittaker and Woodwell 1968, cf. Furneval 1961, Attiwill 1966, Bunce 1968). It consequently expresses the expected range of values for y (to include 68% of individuals, assuming lognormal distribution) for a given value of x as a factor by which y is to be multiplied and divided. An E of 1.10 thus implies an expected range of values of 1.10y to y/1.10, for a given value of the independent variable.

The regressions are generally similar to those given for shrubs and small trees in the Brookhaven forest (Whittaker and Woodwell 1968) and in the studies of Andersson (1970, 1971) and Reiners (1972). Quercus hypoleucoides and Pinus cembroides in the Catalinas are stockier and heavier-branched than Q. alba and P. rigida at Brookhaven and the Quercus studied by Andersson (1970, 1971) and Reiners (1972). Correspondingly the slope constants (B) for stem surface, volume, and weight and other variables with a height component are lower in the Catalina trees. Slope constants for growth of stem wood and bark, branches, and twigs with leaves also are lower, reflecting the slower growth of the trees in the more arid climate of the Catalina woodland. The slope constants for the shrubs are generally higher and more consistent with those for the Brookhaven shrubs and trees.

Biomass

Table 4-B summarizes the community biomass estimates by plant fractions and strata. The total aboveground biomass values for fir forest samples 44, 45, and 47, 360-440 t/ha (dry metric tons per hectare, equals 36-44 kg/m²), are in the range of

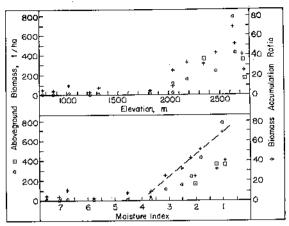


Fig. 2. Aboveground biomass (circles and squares, left ordinate) and biomass accumulation ratios (crosses and right ordinate) in relation to elevation and moisture index in the Santa Catalina Mountains. Biomass accumulation ratio (Table 4-B) is biomass/net annual production of vegetation, both in dry weights aboveground; moisture index (Table 1-B) is a weighted-average expression of position along the moisture gradient from subalpine fir forest (< 1.0) to desert (> 6.0). The three samples represented by squares are probably immature in biomass because of a fire about 130-150 yr ago (samples 44 and 48) or past selective cutting (45). A visual trend line has been fitted to the biomass accumulation ratios of the fully mature stands in the lower panel.

some of the climax forests of favorable environments in the Smokies (Whittaker 1966). Sample 46, in contrast, exceeds in biomass any of the southern Appalachian forests; with allowance for roots its aboveground value of 790 t/ha should become approximately 920 t/ha. The sample was taken from a particularly good stand of large trees by Santa Catalina standards; but it is not a large forest compared with those of the Pacific Northwest and the California coastal redwoods. The four pine forests and woodlands (samples 48-51) have total aboveground biomasses of 114-250 t/ha and compare with the pine forests and high-elevation fir forests (130-210 t/ha) in the Smokies. The low biomass of the aspen sample 59 (and a biomass accumulation ratio of 11.8) reflects its youth; these values are comparable with those for other young deciduous forests (Whittaker and Woodwell 1969, Andersson 1970, 1971, Duvigneaud et al. 1971, Reiners 1972, Reichle 1973).

The remaining woodland, grassland, and desert samples (52–58) have biomasses between 3 and 19 t/ha. The higher values compare with some of those for shrub communities in the southern Appalachians (heath balds, with biomasses of 11–110 t/ha, Whittaker 1963) and the lower values with those for other grasslands and deserts; comparable aboveground

Summer 1975																												
Populus successional forest	59	103 16	5.2	124.6 70	4.	Q: 80	030	i	12.0 12.0 12.0		325 68	217 375	45	5.8	8,8 6,8	3,7	17. 85.64.	1,051	1,220	351	~	n 00		187			.	
	28	4.89° 1.84	47	7.20 03.0	55	₩. 4	397		8.02 14.33		32.3 * 6.1	37.1 45.5	4.0	125.0 5.	1.0	32	14.2	185	330 132	218	,	25	₹'	37.	.53	7,66	9.32	
Larrea diversicate desert serub	23	2,54	42	4.29 86.29	.002	0001	ij		4.29 6 4.7	:	16.7 2.4	53.7	<u>م</u> اد	0.01	8,8	3	90.6	92	140 153	270	,	4 7	20	- 42	96	123	0.92	and 58.
Cercidium microphyllum- Franseria delioidea desert scrub	26	2.35	80.	3.78	.87	1.14	400	;	3.92	1	12.0 3.6	20.0	2.0	21.2	26.6	4.5 4.5	53.6	105	170 178	310	!	22,9	23	- (5	36	543	7.75	samples 57
Spinose- suffrutescent desert serub	55	7.90	.18	12.08	. 2	70.	.112	.053	13.10 21 10.2	1	24.7	29.9 23.0	2.0	83.3	13.0	333	33.3	129	210	257		8=	24	_د 4	.26	924	9.54	8
Bouteloun cutlipendula freest bresseng	54	0.56	0.0	0.64	, %	4. <u>-</u>	.483	Ħ.	2.63	2	4.4	1.4	0.5	16.3	25.0	4.0	62.4	139	280 87.6	185		50 20						canopy shrubs
Open oak	23	6.13	40	9.40	; S	1.45	188	.020	11.22	3	13.9 3.2	22.1	5.0	71.7	250	32.6	47.3	149	300 84.7	186	m	33	18	4 %	22	.856	11.76	d the
woodland oak scrub oak scrub	52	9.06	1.43	15.30	1.02 246:	24.1	031	0.44 4	30	10.1	6.6	12.5	4.0	649	20.0	50.2	117.0	186	350	186	4	£,	24	- Ç	32	738	4.21	nd 56, an
Pinus chihuahuana- Quercus arizonica	51	79	9.9	113.5	<u>.</u>	275	.034	.002	114	67.67	75 20	33.5	15	435		0.4	6.7	446	580	248	∞	97	•	90	35	5553	3.85	ples 55 au
Pinus ponderosa- Quercus Aypoleucoides teroil	20	134	2.5	162.4	77	12,	.00,		163 200 37 50	32.8	129	525	25	491	د به د	3.1	4.4	496	620	275	S	4"	ŋ	۲,	25.	321	2.55	Serri Sam
eimiq ponderosa featof	49	213	2 %	249.8	9.01 5.05	900	045		250 300 300	45.1	136	168	25	575	10	.20	۳, ش	2.0	700	341	'n	·	ሳ	00 0	98,	.143	1.74	on) in de
-nsorabrog Pinus simus sinis simolifornis forest	48						039	.028	161 190	79.0	138	100	30	612	t m	1.1	1.8	4.2 2.3	740	309	4		ď	4.	2 4	354	2.06	Carneri
Pseudotsuga lizsiznsm lizeTol zuniA	47						90.	_	438 520	52.2	227	139	40	833		w 4 c	7.1	.17	1,000	138	æ	· '	۵	4 (3%	.168	1,93	aniioria
ngustopnəs q —iisəizuətu səiq y totoolot 18910 j	46	681	% 5 5 5	783	4٠,0 4,0	. 4. . 4.	6.76 .006	.045	790 920	0.69	340	177	50 50 50	1,075	73	46	93.	9, 14	1,340	96.0 164	4	800	×	4,	16 54	117	3.04 2.56	To a second
A bies concolor isaine isaiol	45	270	74	16.7	210.	200. 200.	.021 .108	.036	361	32.1	395	35	412 54	1,110		.16	<u>2</u> .£.	12.0	1,300	181	a	\v	30	10	4 ¢	.667	7.98 8.59	
zəidh nasiocarpa saiqledus teərot	44	290	5,50	356.2 3	4,0	, 4 ,	2 H		357	41.1	275	130	365 42	860	2.1	4.0	8.5 8.5	10.0	1,020	28.0 150	¥) en	9	-	15	262	1.62	
	i			***									٠						i	r()								
Sample number and characteristic	Sample number	Biomass (dry t/ha) Trees*— Stems	Branches	Foliage Total	ĺ	Branches Foliage	Total	Lichen and moss	Selaginella Total, above ground Total, above and below	Biomass accumulation ratio	Net productivity (g/m²/yr) Trees*— Stem wood	Stem bark Branch wood and bark	Foliage	Fig.	sh— Stems Rranch wood and bark	Foliage	Fruit, flower, etc. Total	•	Total, above ground Total, above and below ^e	Aboveground prod./leaf area (g/m²) Aboveground prod./chlorophyll (g/g)	sity	Species numbers*—— Trees Shrubs	Herbs (20 m^2)	Winter annuals Other herbs		ss— Simpson C Shannon-Wiener H'	Equitability E's	Equinalizary and
Sam	A. Sample		1		Shrubs*-		Useka	Lichen	Selaginella Total, abov Total, abov	Bioma	C. Net pr Trees'-				Shrubs ^e			Herbs	Total, Total,	Above	D. Diversity	Specif			i	Indices		

* "Trees" includes small trees and arborescent strubs (Cercidium, Prosopis, Fouguieria, Carnegia) in desert samples 55 and 56, and the canopy shrubs in samples 57 and 58.

b "Shrubs, Ancied es abordinate true shrubs and all semishrubs in samples dominated by shrubs (53-58). Rosette-shrubs and succilents, etc.) are responsible for some of the differences in distribution, of biomass and production by itsones.

No root data available; belowground estimates are based on plausible to a large that it is a showeground dry weight for all vascular plants.

A Biomass/net annual production, both as aboveground dry weight for all vascular plants.

These, shrubs, and whiter annual species in 0.1 ha. Perennial herbs and summer annuals in 20 m².

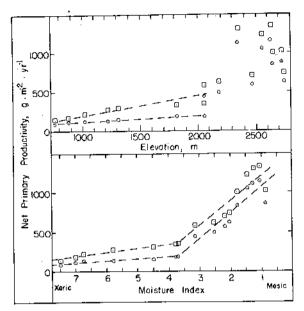


Fig. 3. Net primary productivity vs. elevation and moisture index in the Santa Catalina Mountains. Circles are aboveground productivity, squares estimates for aboveground and belowground productivity of the same samples. The moisture index (Table 1-B) is a weighted average of community composition, based on ecological groups for species responses to topographic moisture gradients and elevation.

values from Eurasia (Rodin and Bazilevich 1967) are as follows: arid steppes 0.3-3.0, Artemisia deserts 0.53-2.6, and shrub tundra 4.9 t/ha.

Figure 2 shows the trends of biomass and biomass accumulation ratios in relation to elevation and moisture index. The trend of biomass decrease toward lower elevations and increasing drought is evident, though the samples are scattered. The study in the Smokies (Whittaker 1966) gave a mean decrease in biomass of 230 t/ha with each gain of 1,000 m elevation. The increasing aridity toward lower elevations in the Catalinas produces a reverse biomass trend of about 590 t/ha increase per 1,000 m elevation gain within the forest and woodland zones (samples 44–52 only). No trend is evident for the lower elevation samples.

Biomass accumulation ratios (BAR, the biomass present/net annual production) express the delayed decomposition and accumulation of persistent, and particularly woody, tissues in terrestrial communities. In forests the ratios correlate with age of the dominants. BAR ranges in the Great Smoky Mountains were 2.5-11 for shrublands (heath balds), 10-20 in young forests, 20-30 in forests of intermediate stature, and 41-52 in mature cove forests (Whittaker 1966). The ratios in the Catalinas are consistent with these, except for the BAR of 69 in sample 46, exceeding that of any eastern forest sampled. In

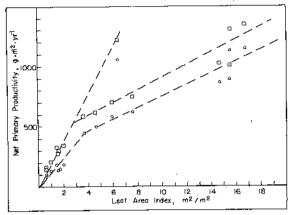


Fig. 4. Net primary productivity vs. leaf area index for communities in the Santa Catalina Mountains. Circles are aboveground productivity, squares estimates for aboveground and belowground productivity for the same samples. Visual trend lines suggest different slopes for deserts and desert grassland, with leaf area indices less than 3, and evergreen woodlands and forests, with leaf area indices of 4-16. The sample with a leaf area index of 6.5 is a high-elevation deciduous, successional forest (Populus tremuloides).

the forest and woodland zones the trend of decrease of BAR toward lower elevations generally parallels the trend for biomass. Apart from the desert grassland (sample 54, BAR = 1.9), the BAR values of lower elevation samples 52–58 are in the range of expected values for shrublands and show no elevation trend. Both biomass and BAR are less scattered in relation to moisture index, in the lower part of Fig. 2, than in relation to elevation.

Production

Three of the forest samples (45, 46, 59, Table 4-C) have net primary productivities in the range suggested as normal for climax temperate forests of favorable environments (Whittaker 1966): 1,000-1,200 g/m²·yr aboveground, 1,200-1,500 g/m²·yr aboveground and belowground. The two samples at highest elevations, a fir and pine forest (44 and 48), are less productive. It is not evident what aspects of their environments (on opposite sides of the summit of Mt. Lemmon) may make these stands less productive than the other fir forests, or the spruce forests in the Great Smoky Mountains. Productivities of the pine forests and woodlands (48-51) range downward from 446-618 g/m² · yr, aboveground. Pine and oak heaths in the Smokies have similar values (419-578 g/m²·yr), but the low-elevation pine forests there were more productive $(875-983 \text{ g/m}^2 \cdot \text{yr})$.

The remaining open woodland, grassland, and desert productivities in the Catalinas, 92-186 g/m²·yr aboveground, are conspicuously low

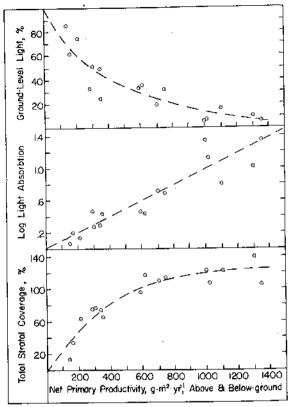


Fig. 5. Light and cover relationships to primary productivity in the Santa Catalina Mountains. Top: ground-level light intensity in per cent of incident sunlight; middle: log10 light absorption (logarithm of incident sunlight intensity, minus mean of logarithm of light intensity at ground level); bottom: total individual-point coverage (number of plant individuals of all strata with foliage above 100 points in the community).

compared with both forests and the closed heath baids (380-590 g/m² yr) of the Smokies. The productivities of the open woodlands (samples 52, 53, and 58) are low compared with some other woodlands for which data are available (Whittaker and Woodwell 1969). Productivity of the desert grassland (54) is close to that of the spinosesuffrutescent semidesert (55). Sample 54 seems near the arid limit for grasslands; it may be compared with the dry steppes of Rodin and Bazilevich (1967), the short grass plains of Weaver (1924, 160 g/m2: yr), and African dry grasslands producing 90-170 g/m²· yr aboveground (Walter 1939, 1964). Chew and Chew (1965) estimated 130 g/m2·yr aboveground for a Larrea desert in Arizona. Their stand was in a somewhat less arid area and may have replaced desert grassland in consequence of grazing. Soholt (1973) measured aboveground production in a Mojave creosotebush desert, California, as 23.6 g/m²·yr in annual herbs and 7.0 g/m²·yr in leaves, twigs, and fruits of shrubs. The above-



Fig. 6. Vascular plant diversity in relation to elevation and moisture index in the Santa Catalina Mountains. Equitability indices, mean number of species per logarithmic cycle (Whittaker 1972), are plotted $E_c = S/\log p_1 - \log p_s$), circles, and $E'_c = S/4 \sqrt{2(\log p_t - \log \hat{p})^2/S}$, squares. S = number of species in samples, and p_t aboveground net primary productivities— p_t of the most productive and p_s of the least productive species in the sample, \hat{p} the geometric mean for the sample; logarithms are to base 10. The curve for species diversity or richness, S, has the same form. Peak diversity occurs in the desert grassland and open oak woodland 1,220 and 1,310 m elevation, a lower secondary peak in fir forests at 2,500–2,700 m. Sample 45 is a ravine forest with diversity departing from the elevation trend.

ground total (estimating shrub stem and branch production as 4.1 g/m²·yr on the basis of the ratio of these to twig and leaf production in Table 2-E) would be 37.7 g/m²·yr. The four Arizona desert samples (Chew and Chew's and our samples 55-57) with net productivities of 92-130 g/m²·yr aboveground represent the mesophytic margin of southwestern desert environments, and much lower productivities occur in more arid areas (Lavrenko et al. 1955, Rodin and Bazilevich 1967).

The Cercocarpus shrubland on limestone (sample 58) is in a class with the pygmy conifer—oak scrub (52) and open oak woodland (53) in productivity. Sample 58, however, is at a higher elevation than the open oak woodland, and the pygmy conifer—oak scrub does not occur on the north side of the range where Cercocarpus scrub appears on limestone. The vegetation patterns of limestone and granite on the north slope (Whittaker and Niering 1968b) would predict a denser, mesic phase of the oak woodland or a pine—oak woodland for the Cercocarpus site if it were on granite. The limestone soil thus implies reduction of productivity, as well as a more xeric moisture index, compared with a corresponding site

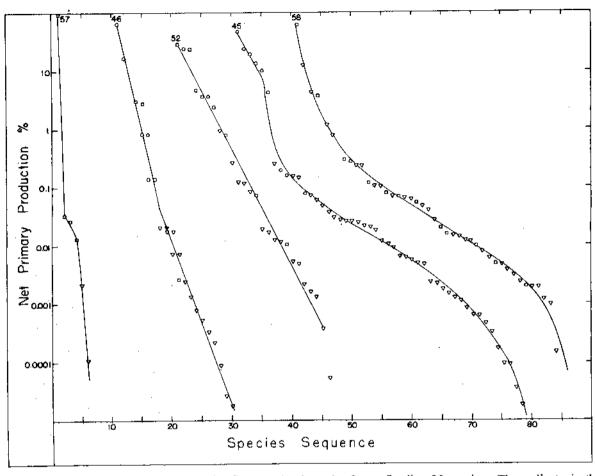


Fig. 7. Dominance-diversity curves for five samples from the Santa Catalina Mountains. The ordinate is the logarithm of aboveground net primary production for species, expressed as per cent of the totals for each sample. Species are arranged in sequence from the most to the least productive, by the scale on the abscissa. Four of the curves are displaced to the right to avoid overlap, and their first species are consequently at positions 11, 21, 31, and 41 on the abscissa. Circles are tree species, squares shrub species, and triangles herb species. Communities sampled: 57 a creosotebush (Larrea divaricata) desert; 46 a montane fir forest of Pseudotsuga menziesii and Abies concolor; 2a pygmy conifer—oak scrub with Pinus cembroides, Iuniperus deppeana, Quercus hypoleucoides, and Arctostaphylos spp.; 45 a ravine forest dominated by Abies concolor; and 58 a middle-elevation shrubland dominated by Cercocarpus breviflorus on limestone.

on an acid soil. The limestone is fissured and may permit rapid drainage of rainwater.

Figure 3 shows a trend of productivity increase with elevation up to 2,000 m, but at higher elevations the values are scattered. The moisture indices so transpose the samples as to produce a recognizable, though irregular, trend at higher elevations. Different slopes of production increase with elevation are suggested for more arid and more humid environments in Fig. 3. The visual trend lines give increases of about 25 g/m² yr aboveground per moisture index unit for the more arid, and 320 g/m² yr for the more humid series. Figure 1 suggests that a moisture index unit may correspond to about 10 cm precipitation difference. On this basis net aboveground production would increase by about 2.5 g/m² yr

per cm of precipitation in the more arid, 32 g/m² · yr per cm in the more humid series. For dry grasslands Walter (1939, 1964) obtained a linear increase of aboveground productivity with rainfall of about 10 g/m² · yr per cm of precipitation between 10 and 55 cm.

Leaf area and chlorophyll

Estimates of leaf area index and chlorophyll per unit ground area are given in Table 1-C, ratios of aboveground productivity to these in Table 4-C. The surface area and chlorophyll estimates for fir forests, with evergreen needles persistent over 5 yr, are high in comparison with most literature values (Art and Marks 1971). The surface area and chlorophyll values for the lower elevation commu-

nities are underestimates in that photosynthetic surface and chlorophyll in stems and branches were estimated only for the cacti. In the lower elevation communities photosynthesis occurs in stems and branches of some shrub species during the dry season, when the leaves have been lost. The chlorophyll and photosynthetic surface estimates for leaves (and cacti) only are thus low for the rainy, but high for the dry season. The ratios of aboveground net productivity to leaf area and chlorophyll are low in the fir forests (54-72 g/m², 138-181 g/g), and consistently higher in the open woodland, grassland, and desert communities (85-165 g/m², 185-350 g/g).

The relationship is shown in another form in Fig. 4. Two slopes of total net primary productivity in relation to leaf area index are suggested: a steeper slope (of about 190 g/m²·yr increase per LAI unit) for the lower elevation communities, and a less steep slope (of about 50 g/m²·yr increase per LAI unit) for the higher elevation forests. A similar relation applies to production/chlorophyll ratios. The only deciduous community of a humid environment sampled, the aspen stand (59), falls on the line for the lower elevation communities.

Three other production relations-to ground-level light, log light absorption, and total stratal coverage —are shown in Fig. 5. Ground-level light percent (the geometric mean of light intensity at ground level, as a percent of incident sunlight) decreases as productivity and, in correlation with this, biomass and coverage, increase. Productivity in relation to log light absorption (log10 of incident sunlight minus logic of ground-level sunlight) is complementary to the preceding, but is linear. In both cases the points are scattered in relation to the trend, and light penetration or absorption seems not effective as an index of production (Whittaker 1966). The curve of total stratal coverage on production relates to Fig. 4, though based on a different expression of community coverage. Total stratal coverage is the sum of individual-point coverages (number of plant individuals with foliage above 100 points) for the tree, shrub, and herb strata.

Growth-forms and diversity

Relations of vascular plant species diversity to elevation are shown in Table 4-D as several indices: S = number of tree and shrub species in 0.1-ha plus herb species in 25-m² quadrats (additional herb species in the 0.1 ha are indicated separately); the Simpson index, $C = \sum_s p_i^2$; the Shannon-Wiener index, $H' = -\sum_s p_i \log_{10} p_i$; and mean species per log cycle, E_c and E'_c (Fig. 6). In these p_i is relative productivity (percent in a given species of the total aboveground net productivity for a sample). The Simpson (1949) index expresses relative concentra-

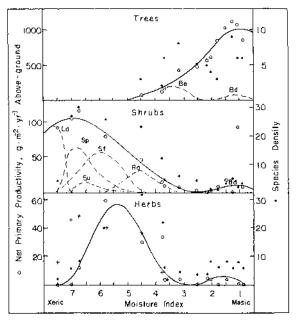


Fig. 8. Net primary productivity and species diversity of strata in relation to the moisture index, Santa Catalina Mountains. The circles are net primary productivity aboveground in g/m²/yr, left ordinate; the solid points are numbers of species per 0.1 ha (or, for herbs, 25 m2), right ordinate. Smoothed curves for productivities of fractions of strata are indicated by dashed lines, without datum points. Top: Bd is broadleaf deciduous and Be broadleaf evergreen trees; the remaining trees are needleleaf evergreen. (Cercidium and other small trees of the desert are here treated as shrubs.) Middle: Bd is broadleaf deciduous, Ro rosette shrubs, Sf suffrutescent semishrubs, Su succulents, and Sp spinose shrubs; La is Larrea divaricata. Bottom: the solid points are numbers of perennial and summer annual species in 25 m², the crosses numbers of winter annual species in 0.1 ha.

tion of dominance, H' primarily expresses equitability (Auclair and Goff 1971, Whittaker 1972), and E_c is an equitability measure (Whittaker 1972). The alternative form E'_c gives results paralleling E_c .

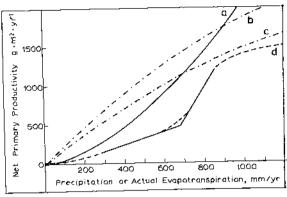
The fir forest sample 45 has a rich streamside flora that makes it diverse beyond the other highelevation forests. Apart from this sample, the pattern of species diversity as represented by E_{ε} and Sis an increase from the high-elevation fir forests to the open oak woodland and desert grassland of lower elevations, followed by a decrease through the three deserts to a minimum in Larrea sample 57 (Fig. 6). If the samples are arranged by moisture index, the pattern is further complicated by a decrease from mesic fir (45, 46, 59) to more xeric pine (47-49) high-elevation forests, followed by the more conspicuous increase from the latter into the woodlands (51-53). The Shannon-Wiener index and the one complement of the Simpson index largely parallel the pattern for S and E_c ; exception to this parallelism involve contrasts in relative dominance.

Dominance-diversity curves, using aboveground net productivity as the importance value, are shown for five communities in Fig. 7. Sample 57, the Larrea desert, has extreme dominance by one species and low species diversity. Three subordinate shrubs and semishrubs (Ephedra nevadensis, Psilostrophe cooperi, and Zinnia pumila) make up the hump in the middle of the curve, and two herbs with trivial productivities (Tridens pulchellus and Pectis papposa) the bottom points. In sample 46, as in all other forest samples of this study, the trees suggest a straight line approaching a geometric series (Whittaker 1965b, 1972). In sample 46 the herb stratum also suggests a geometric slope; in sample 45, in contrast, the rich herb stratum is sigmoid and suggestive of a lognormal distribution. Sample 52, a community of intermediate species diversity, suggests a geometric slope and resembles the curve for a pine forest in the Great Smoky Mountains (Whittaker 1965b, sample 10). Sample 58 represents a pattern more typical of woodlands, combining strong dominance with moderately high species diversity and sigmoid form. The remaining samples range from approximately geometric slopes (44, 47, 48, 49, 59) to sigmoid curves suggesting sparse lognormal distributions (50, 51, 53, 54, 55).

Correlation of diversity with productivity has been suggested (Connell and Orias 1964, MacArthur 1969). Figures 3 and 6 do not support such a correlation. The vegetation gradient from high to low elevation in the Catalinas is a physiognomic continuum, within which the various growth-forms have their peak importances in this sequence: needle-leaf evergreen trees, broadleaf-evergreen trees, rosette shrubs, grasses, semishrubs, and spinose shrubs (Whittaker and Niering 1965). Relations of diversity and productivity can be examined for these growth-forms as components of plant communities, but these relations are complex (Fig. 8). Consideration of growthforms suggests these observations: (1) Within the tree stratum, no correlation of species number with productivity is in evidence. (2) Among perennial herbs both diversity and productivity are bimodal (with minima in the pine forests), and the two measures appear loosely correlated. Annual herbs are concentrated in the open and xeric communities, increasing in diversity and productivity from woodlands through desert grassland to less extreme deserts, but decreasing from these to the more extreme Larrea desert. (3) A loose correlation of diversity and productivity is suggested for the shrub stratum, when all shrub growth-forms are grouped together. (Certain arborescent shrubs forming part of the community canopy have been grouped with the tree stratum in Fig. 8-Arctostaphylos in sample 52, Cercocarpus in sample 58. Arborescent, spinose plants of the desert—Carnegiea, Cercidium, Fouquieria—have, in contrast, been grouped with other spinose shrubs.) Within the shrub stratum the different growth-forms have separate centers of maximum diversity and productivity. (4) For the strata of dominants—whether trees, shrubs, or grasses—there is no correlation of diversity and productivity where these strata are dominant. For subordinate strata and growth-forms diversity and productivity are in general loosely correlated. (5) In temperate vegetation the tree stratum is in general less rich in species than are the herb and shrub strata, and the herb and shrub strata are on the average less rich beneath a closed forest canopy than in open woodland and grassland communities.

Discussion

The relations of diversity to productivity do not encourage sweeping generalizations (cf. Whittaker 1965b, 1969, 1972). This study is in accord with others in indicating, however, that the highest temperate vascular plant species diversities are not in the most productive, closed forests but in less productive, open communities of intermediate environments—certain woodlands, grasslands, and shrublands. For the elevation gradient in the Catalinas the relation of diversity to moisture is combined with the relation to temperature, from which increasing diversity toward lower elevations would be expected. The high diversity of the spinose–suffrutescent semi-desert may reflect the fact that this is a warm-temperate, near-subtropical community.


The results on productivity and biomass are generally in accord with those from the Great Smoky Mountains (Whittaker 1966) in suggesting characteristic ranges of these for most climax temperate forests and woodlands: for forests net productivity of 600-1,200 g/m²·yr aboveground and 700-1,500 g/m²·yr total, and biomass of 200-500 t/ha aboveground and 250-600 t/ha total; for woodlands net productivity of 150-600 g/m² yr aboveground and 250-700 g/m² yr total, and biomass of 20-200 t/ha aboveground and 30-250 t/ha total. Biomass of a mature Douglas-fir forest was higher, and that of an open oak woodland lower, than the ranges given. The transition from semidesert to one of the intermediate communities (grassland or woodland) appears to occur at about 150 g/m² yr aboveground, probably 250 g/m² yr total net primary productivity. Aboveground semidesert biomasses (4-13 t/ha in this study) exceeded those of desert grassland (2.6 t/ha in one sample of this study). Mountain-slope limestones in this area support vegetation that is Chihuahuan in floristic affinities and is more xeric in composition and structure than that on granite (Whittaker and Niering 1968b).

Many sites (as defined by elevation and topographic position) that support Cercocarpus shrubland on limestone support pine-oak woodland on granite. The contrast of these two types in biomass and production is represented by samples 58 and 51, which are roughly, though not closely, comparable in site: 8 t/ha and 185 g/m² yr aboveground for Cercocarpus shrubland, 114 t/ha and 446 g/m² yr for pine-oak woodland.

The most interesting result from the study may be the evidence of change in the character of productive relationships along the moisture gradient. In Fig. 2-4 different slopes for these relationships apply to the forest communities of more humid, and the woodland, grassland, and desert communities of more arid environments. The data are not adequate to assure that this is an abrupt change of slope, as distinguished from a curve of changing relationships toward higher elevations. To the extent a change of slope can be located, however, it is not at the desert border but at the transition from open to denser woodland, hence at the point along the gradient where trees become the primary basis of community productivity. As shown in Fig. 1, the limited climatic data suggest a linear relation of precipitation to elevation. One should be cautious in relating the productivities of this study to probable climate as implied by elevation. Accepting the evidence as it stands, however, the dual slopes in Fig. 2-4 suggest as an hypothesis different patterns of community response to the moisture gradient:

- 1) The communities of arid environments are surface-limiting, with transpiring surfaces minimized but with high productive efficiency of those surfaces made possible by their exposure to relatively full sunlight (and, in some species, such special photosynthetic adaptations as C_4 and crassulacean acid metabolism).
- 2) The evergreen forests of more humid environments are surface-abundant; with sufficient moisture they have much higher leaf area indices, but the productive efficiency per unit leaf surface is lower. The possibility of supporting high leaf surface areas permits, however, more rapid increase in productivity per unit of available moisture from woodlands into forests than in the surface-limiting communities.
- 3) With still greater moisture availability in humid forests, factors other than moisture (nutrient turnover, balance of respiring and photosynthetic tissue, light absorption) may become limiting, producing the 1,200-1,500 g/m²·yr range for mesophytic climax temperate forests. (Some young and floodplain temperate forests exceed this range.)

The two slopes of the Catalina productivity measurements (Fig. 3) in relation to probable precipitation values, and the assumption of a plateau

Four interpretations of the relation of net primary productivity (dry g/m²/yr) to precipitation and actual evapotranspiration. a: The curve fitted by Rosenzweig (1968) for aboveground net primary productivity of forests and shrublands in relation to actual evapotranspiration (mm/yr), with the form NPP = 1.66log₁₀ AE - 1.66. b: The curve fitted by Lieth (1974) for total net primary productivity of diverse kinds of communities in relation to actual evapotranspiration, with the form NPP = 3,000 $(1 - e^{-0.000005(AE-20)})$. c: The curve fitted by Lieth (1973, 1974) for total net primary productivity in relation to mean annual precipitation (mm/yr), with the form NPP = $3,000/(1 + e^{1.350-0.319 \text{ MAP}})$. The nearly linear lower part of this curve is the ratio obtained by Walter (1939, 1964) for dry grasslands: NPP = MAP (g/m²/yr aboveground, mm/yr), hence total NPP is about $2 \times MAP$ for the same units. d: A hand-drawn curve relating the two slopes of the Santa Catalina total net primary productivity estimates (Fig. 3) to probable mean annual precipitation, and adding to these a third, upper slope for limitation of climax temperate forest productivity at around 1,500 g/m²/yr.

of productivity at precipitations higher than those reached in the Catalinas, have been combined in curve d of Fig. 9. The hollow lower part of the curve resembles the logarithmic fit of net productivity to evapotranspiration by Rosenzweig (1968), rather than the convex curves fitted to mean productivity in relation to precipitation and evapotranspiration by Lieth (1973, 1974). The curve may fall below Rosenzweig's (for primarily cooler temperate communities) because in a hot, dry climate the net production efficiency of a given amount of precipitation and evapotranspiration may be less (as a result of increased respiration and evaporative stress) than in a cooler climate. The response of productivity to combinations of moisture and temperature may be complex: for surface-abundant communities of humid environments higher net productivity for a given amount of precipitation should occur at higher temperatures; for surface-limiting communities of arid environments lower net productivity for a given amount of precipitation should occur at higher temperatures. (The latter statement excludes arcticalpine communities in which productivity is limited by temperature and growing season.)

The available data for evapotranspiration in Southwestern mountains indicate that actual evapotranspiration should be the same as precipitation at lower elevations in the Catalinas, up to the woodlands and precipitation values of 400-500 mm. For the cooler climates toward higher elevations evapotranspiration should remain roughly constant at values between 400 and 500 mm (Thornthwaite and Mather 1957, Buol 1964, Mather 1964). It is in this range of higher elevations with relatively constant actual evapotranspiration indices that the steep increase in productivity with increasing precipitation shown in Fig. 3 and 9 occurs. In this area the Thornthwaite actual evapotranspiration values seem not more useful than precipitation itself as a variable to which productivity may be related. Figure 9 suggests that the response of community productivity to climate is complex and nonlinear (comparing related communities in a given area, rather than Lieth's world averages), and therefore more interesting than has been recognized.

ACKNOWLEDGMENTS

Research supported in part by a grant to Brooklyn College from the National Science Foundation for "A study of southwestern mountain vegetation." Computer analysis of data was carried out at Brookhaven National Laboratory as part of a program in forest production with G. M. Woodwell, under the auspices of the U.S. Atomic Energy Commission.

LITERATURE CITED

Adams, M. S., and B. R. Strain. 1969. Seasonal photosynthetic rates in stems of *Cercidium floridum* Benth. Photosynthetica 3:55-62.

Adams, M. S., B. R. Strain, and I. P. Ting. 1967. Photosynthesis in chlorophyllous stem tissue and leaves of Cercidium floridum: Accumulation and distribution of ¹⁴C from ¹⁴CO₂. Plant Physiol. 42:1797-1799.

Andersson, F. 1970. Ecological studies in a Scanian woodland and meadow area, southern Sweden. II. Plant biomass, primary production and turnover of organic matter. Bot. Not. 123:8-51.

Art, H. W., and P. L. Marks. 1971. A summary table of biomass and net annual primary production in forest production ecosystems of the world, p. 1-32. *In* H. E. Young [ed.] Forest biomass studies. Univ. Maine, Orono.

Attiwill, P. M. 1966. A method for estimating crown weight in *Eucalyptus*, and some implications of relationships between crown weight and stem diameter. Ecology 47:795-804.

Auclair, A. N., and F. G. Goff. 1971. Diversity relations of upland forests in the western Great Lakes area. Am. Nat. 105:499-528.

Barbour, M. G. 1969. Age and space distribution of the desert shrub Larrea divaricata. Ecology 50:679– 685. Baskerville, O. L. 1972. Use of the logarithmic equation in the estimation of plant biomass. Can. J. For. Res. 2:49-53.

Battan, L. I., and C. R. Green. 1971. Summer rainfall over the Santa Catalina Mountains. Univ. Ariz., Inst. Atmos. Phys., Tech. Rep. 22:1-3.

Beauchamp, J. J., and J. S. Olson. 1973. Correction for bias in regression estimates after logarithmic transformation. Ecology 54:1403-1407.

Bunce, R. G. H. 1968. Biomass and production of trees in a mixed deciduous woodland. I. Girth and height as parameters for the estimation of tree dry weight. I. Ecol. 56:759-775

weight. J. Ecol. 56:759-775. Buol, S. W. 1964. Calculated actual and potential evapotranspiration in Arizona. Univ. Ariz. Agric. Exp. Sta., Tech. Bull. 162:1-48.

Cannon, W. A. 1905. On the transpiration of Fouquieria splendens. Bull. Torrey Bot. Club 32:397-414.

Chew, R. M., and A. E. Chew. 1965 The primary productivity of a desert-shrub (*Larrea tridentata*) community. Ecol. Monogr. 35:355-375.

Clements, F. E. 1936. Nature and structure of the climax. J. Ecol. 24:252-284.

Connell, J. H., and E. Orias. 1964. The ecological regulation of species diversity. Am. Nat. 98:399-414. Crow, T. R. 1971. Estimation of biomass in evenaged stands—regression and "mean tree" techniques, p. 35-48. In H. E. Young [ed.] Forest biomass studies. Univ. Maine, Orono.

Cunningham, G. L., and B. R. Strain. 1969a. An ecological significance of seasonal leaf variability in a desert shrub. Ecology 50:400-408.

Cunningham, G. L., and B. R. Strain. 1969b. Irradiance and productivity in a desert shrub. Photosynthetica 3:69-71.

Duvigneaud, P., P. Kestemont, and P. Ambroes. 1971. Productivité primaire des forêts temperées d'essences feuillues caducifoliées en Europe occidentale (Engl. summ.), p. 259-270. In P. Duvigneaud [ed.] Productivity of forest ecosystems. Proc. Brussels Symp. 1969. UNESCO, Paris.

Furneval, G. M. 1961. An index for comparing equations used in constructing volume tables. For. Sci. 7:337-341.

Lavrenko, E. M., V. N. Andreev, and V. L. Leontief. 1955. Profile of the productivity of natural above ground vegetation of the U.S.S.R. from the tundra to the deserts (in Russian). Bot. Zhur. S.S.S.R. 40: 415-419.

Lieth, H. 1973. Primary production: Terrestrial ecosystems. Human Ecol. 1:303-332.

the world. In H. Lieth & R. H. Whittaker [ed.] Primary productivity of the biosphere. Springer, New York. (In press.)

Lowe, C. H. 1964. Arizona landscapes and habitats,
 p. 1-132. In C. H. Lowe [ed.] The vertebrates of Arizona. Univ. Arizona, Tucson.
 MacArthur, R. H. 1969. Patterns of communities in

MacArthur, R. H. 1969. Patterns of communities in the tropics. Biol. J. Linn. Soc. Lond. 1:19-30.

Mallery, T. D. 1936. Rainfall records for the Sonoran Desert. Ecology 17:110-121, 212-215.

Martin, W. P., and J. E. Fletcher. 1943. Vertical zonation of great soil groups on Mt. Graham, Arizona, as correlated with climate, vegetation, and profile characteristics. Univ. Ariz. Agric. Exp. Sta., Tech. Bull. 99:89-153.

Mather, J. R. 1964. Average climatic water balance

- data of the continents. VII. United States. Publ. Climatol., Thornthwaite Lab. Climatol., Centerton, New Jersey 17:415-615.
- McDonald, I. E. 1956. Variability of precipitation in an arid region: A survey of characteristics for Arizona. Univ. Ariz., Inst. Atmos. Phys., Tech. Rep. 1:1-88.

Mooney, H. A., and B. R. Strain. 1964. Bark photosynthesis in ocotillo. Madrofio 17:230-233.

- Niering, W. A., R. H. Whittaker, and C. H. Lowe, Ir. 1963. The saguaro: A population in relation to environment. Science 142:15-23.
- vironment. Science 142:15-23.
 Oechel, W. C., B. R. Strain, and W. R. Odening. 1972.
 Tissue water potential, photosynthesis, ¹⁴C-labeled photosynthate utilization, and growth in the desert shrub Larrea divaricata Cav. Ecol. Monogr. 42:127-141.
- Ogawa, H., K. Yoda, and T. Kira. 1965. Comparative ecological studies on three main types of forest vegetation in Thailand. II. Plant biomass. Nat. Life Southeast Asia 4:49-80.
- Reichle, D. E., B. E. Dinger, N. T. Edwards, W. F. Harris, and P. Sollins. 1973. Carbon flow and storage in a forest ecosystem. In G. M. Woodwell [ed.] Carbon and the biosphere. Brookhaven Symp. Biol. 24:345-365.
- Reiners, W. A. 1972. Structure and energetics of three Minnesota forests. Ecol. Monogr. 42:71-94.
- Rickard, W. H. 1963. Vegetational analyses in a creosote bush community and their radioecologic implications, p. 39-44. In V. Schultz and A. W. Klement, Ir. [ed.] Radioecology. Proc. 1st Natl. Symp. Radioecol., Fort Collins, 1961. Reinhold and Am. Inst. Biol. Sci., Washington, D.C.
- Rodin, L. E., and N. I. Bazilevich. 1967. Production and mineral cycling in terrestrial vegetation. Oliver & Boyd, Edinburgh and London. 288 p.
- Rosenzweig, M. L. 1968. Net primary productivity of terrestrial communities: Prediction from climatological data. Am. Nat. 102:67-74.
- Runyon, E. H. 1934. The organization of the creosote bush with respect to drought. Ecology 15:128-138.
- Scott, F. M. 1932. Some features of the anatomy of Fouquieria splendens. Am. J. Bot. 19:673-678.
- and Parkinsonia microphylla. Madroño 3:33-31.
- Sellers, W. D. 1960. Arizona climate. Univ. Arizona, Tucson. 60 p. + tables.
- Shanks, R. E., and E. E. C. Clebsch. 1962. Computer programs for the estimation of forest stand weight and mineral pool. Ecology 43:339-341.
- Shreve, E. B. 1924. Factors governing seasonal changes in transpiration of *Encelia farinosa*. Bot. Gaz. 77: 432-439.
- Shreve, F. 1911. Establishment behavior of the palo verde. Plant World 14:289-296.
- range as conditioned by climatic factors. Carnegie Inst. Wash. Publ. 217:1-112.
- 1964. Vegetation of the Sonoran Desert, p. 1-186. In F. Shreve and I. L. Wiggins [ed.] Vegetation and flora of the Sonoran Desert. Stanford Univ. Press, Stanford, California.
- Simpson, E. H. 1949. Measurement of diversity. Nature 163:688.
- Soholt, L. F. 1973. Consumption of primary production by a population of kangaroo rats (*Dipodomys merriami*) in the Mohave Desert. Ecol. Mongr. 43: 357-376.

- Strain, B. R. 1969. Seasonal adaptations in photosynthesis and respiration in four desert shrubs growing in situ. Ecology 50:511-513.
- Strain, B. R., and V. C. Chase. 1966. Effect of past and prevailing temperatures on the carbon dioxide exchange capacities of some woody desert perennials. Ecology 47:1043-1045.
- Thornthwaite, C. W., and J. R. Mather. 1957. Instructions and tables for computing potential evapotranspiration and the water balance. Publ. Climatol., Thornthwaite Lab. Climatol., Centerton, New Jersey 10:181-311.
- Turner, R. M. 1963. Growth in four species of Sonoran Desert trees. Ecology 44:760-765.
- Walter, H. 1939. Grasland, Savanne und Busch der ariden Teile Afrikas in ihrer ökologischen Bedingtheit. Jahrb. Wissensch. Bot. 87:750-860.
- Betrachtung. Vol. 1. Die gemässigten und subtropischen Zonen. Fischer, Jena.
- Weather Bureau. 1952-54. Climatological data, Arizona. Annual summaries. U.S. Dep. Commerce, Weather Bureau, Washington, D.C.
- Weaver, J. E. 1924. Plant production as a measure of environment. J. Ecol. 12:205-237.
- Whittaker, R. H. 1953. A consideration of climax theory: The climax as a population and pattern. Ecol. Monogr. 23:41-78.
- of forest and shrub communities. Ecology 42:177–180.
- the Great Smoky Mountains. Ecology 43:357-377.
- 1963. Net production of heath balds and forest heaths in the Great Smoky Mountains. Ecology 44:176-182.
- _____. 1965a. Branch dimensions and estimation of branch production. Ecology 46:365-370.
- _____. 1965b. Dominance and diversity in land plant communities. Science 147:250-260.
- the Great Smoky Mountains. Ecology 47:103-121.
- munities. Brookhaven Symp. Biol. 22:178-196.
- ______. 1972. Evolution and measurement of species diversity. Taxon 21:213-251.
- R. Knapp [ed.] Vegetation dynamics. Handb. Veg. Sci. 8:137-154.
- Whittaker, R. H., F. H. Bormann, G. E. Likens, and T. G. Siccama. 1974. The Hubbard Brook ecosystem study: Forest biomass and production. Ecol. Monogr. 44:233-254.
- Whittaker, R. H., S. W. Buol, W. A. Niering, and Y. H. Havens. 1968. A soil and vegetation pattern in the Santa Catalina Mountains, Arizona. Soil Sci. 105: 440-450.
- Whittaker, R. H., N. Cohen, and J. S. Olson. 1963. Net production relations of three tree species at Oak Ridge, Tennessee. Ecology 44:806-810.
- Whittaker, R. H., and V. Garfine. 1962. Leaf characteristics and chlorophyll in relation to exposure and production in *Rhododendron maximum*. Ecology 43: 120-125.
- Whittaker, R. H., and P. L. Marks. 1975. Measurement of net primary productivity on land. In H. Lieth and R. H. Whittaker [ed.] Primary productivity of the biosphere. Springer, New York. (In press.)

- Whittaker, R. H., and W. A. Niering. 1964. Vegetation of the Santa Catalina Mountains, Arizona. I. Ecological classification and distribution of species. J. Ariz. Acad. Sci. 3:9-34.
- Whittaker, R. H., and W. A. Niering. 1965. Vegetation of the Santa Catalina Mountains, Arizona. II. A gradient analysis of the south slope. Ecology 46: 429-452.
- Whittaker, R. H., and W. A. Niering. 1968a. Vegetation of the Santa Catalina Mountains, Arizona. III. Species distribution and floristic relations on the north slope. J. Ariz. Acad. Sci. 5:3-21.
- Whittaker, R. H., and W. A. Niering. 1968b. Vegetation of the Santa Catalina Mountains, Arizona. IV. Limestone and acid soils. J. Ecol. 56:523-544.
- Whittaker, R. H., and G. M. Woodwell. 1967. Surface

- area relations of woody plants and forest communities. Am. J. Bot. 54:931-939.
- Whittaker, R. H., and G. M. Woodwell. 1968. Dimension and production relations of trees and shrubs in the Brookhaven forest, New York. J. Ecol. 56:1-25.
- Whittaker, R. H., and G. M. Woodwell. 1969. Structure, production and diversity of the oak-pine forest at Brookhaven, New York. J. Ecol. 57:157-174.
- Whittaker, R. H., and G. M. Woodwell. 1971. Measurement of net primary production of forests (French summ.), p. 159-175. In P. Duvigeneaud [ed.] Productivity of forest ecosystems. Proc. Brussells Symp. 1969. UNESCO, Paris.
- Woodell, S. R. J., H. A. Mooney, and A. J. Hill. 1969. The behaviour of *Larrea divaricata* (creosote bush) in response to rainfall in California. J. Ecol. 57:37-44.